已知向量=(cosx,0),=(0,sinx),記函數(shù)f(x)=。
(1)求函數(shù)f(x)的最小值及取最小值時(shí)x的集合;
(2)若將函數(shù)f(x)的圖象按向量平移后,得到的圖象關(guān)于坐標(biāo)原點(diǎn)成中心對(duì)稱,且在[0,]上單調(diào)遞減,求長(zhǎng)度最小的。
解:(1)∵


∴當(dāng)且僅當(dāng),即(k∈Z)時(shí)
f(x)min=0
此時(shí)x的集合是;
(2)設(shè)f(x)的圖象按向量平移后對(duì)應(yīng)的函數(shù)為g(x)

∵g(x)的圖象關(guān)于坐標(biāo)原點(diǎn)成中心對(duì)稱
,且
解得(k∈Z),且
時(shí),上單調(diào)遞增,不合題意,舍去;
時(shí),上單調(diào)遞減,符合題意
(k∈Z)
∴長(zhǎng)度最小的。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(cosx,sinx),
b
=(-cosx,cosx),
c
=(-1,0).
(Ⅰ)若x=
π
6
,求向量
a
c
的夾角;
(Ⅱ)當(dāng)x∈[
π
2
8
]
時(shí),求函數(shù)f(x)=2
a
b
+1
的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
m
=(2sinx-cosx,sinx),
n
=(cosx-sinx,0)
,且函數(shù)f(x)=(
m
+2
n
)
m.

(Ⅰ)求函數(shù)f(x)的最小正周期;
(Ⅱ)將函數(shù)f(x)向左平移
π
4
個(gè)單位得到函數(shù)g(x),求函數(shù)g(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
m
=(
3
sinx+cosx,1),
n
=(
1
2
f(x),cosx),
m
n

(I)求f(x)的單調(diào)增區(qū)間及在[-
π
6
,
π
4
]
內(nèi)的值域;
(II)已知A為△ABC的內(nèi)角,若f(
A
2
)=1+
3
,a=1,b=
2
,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
m
=(
3
sinx+cosx,1),
n
=(cosx,-f(x))
,且
m
n
,
(1)求f(x)的單調(diào)區(qū)間;
(2)當(dāng)x∈[0, 
π
2
]
時(shí),函數(shù)g(x)=a[f(x)-
1
2
]+b
的最大值為3,最小值為0,試求a、b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
m
=(
3
sinx-cosx,1)
n
=(cosx,
1
2
)
,若f(x)=
m
n

(Ⅰ) 求函數(shù)f(x)的最小正周期;
(Ⅱ) 已知△ABC的三內(nèi)角A、B、C的對(duì)邊分別為a、b、c,且a=3,f(
A
2
+
π
12
)=
3
2
(A為銳角),2sinC=sinB,求A、c、b的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案