17.復數(shù)z=$\frac{2{i}^{2}+4}{i+1}$的虛部為( 。
A.-3B.-1C.1D.2

分析 直接利用復數(shù)代數(shù)形式的乘除運算化簡得答案.

解答 解:∵z=$\frac{2{i}^{2}+4}{i+1}$=$\frac{2}{1+i}=\frac{2(1-i)}{(1+i)(1-i)}=1-i$,
∴復數(shù)z=$\frac{2{i}^{2}+4}{i+1}$的虛部為-1.
故選:B.

點評 本題考查復數(shù)代數(shù)形式的乘除運算,考查了復數(shù)的基本概念,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

7.已知集合A={x∈N|0≤x≤5},B={x|2-x<0},則A∩(∁RB)=( 。
A.{1}B.{0,1}C.{1,2}D.{0,1,2}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.在直角坐標系xoy中,直線l經(jīng)過點P(-1,0),其傾斜角為α,在以原點O為極點,x軸非負半軸為極軸的極坐標系中(取相同的長度單位),曲線C的極坐標方程為ρ2-6ρcosθ+1=0.
(Ⅰ)若直線l與曲線C有公共點,求α的取值范圍;
(Ⅱ)設M(x,y)為曲線C上任意一點,求x+y的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知函數(shù)$f(x)=\left\{\begin{array}{l}\sqrt{x}+3,x≥0\\ ax+b,x<0\end{array}\right.$滿足條件:對于?x1∈R,且x1≠0,?唯一的x2∈R且x1≠x2,使得f(x1)=f(x2).當f(2a)=f(3b)成立時,則實數(shù)a+b=( 。
A.$\frac{{\sqrt{6}}}{2}$B.$-\frac{{\sqrt{6}}}{2}$C.$\frac{{\sqrt{6}}}{2}$+3D.$-\frac{{\sqrt{6}}}{2}$+3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知α是第一象限角,滿足$sinα-cosα=\frac{{\sqrt{10}}}{5}$,則cos2α=( 。
A.-$\frac{3}{5}$B.$±\frac{3}{5}$C.$-\frac{4}{5}$D.$±\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.一個籃球運動員投籃一次得3分的概率為a,得2分的概率為b,不得分的概率為c(a,b,c∈(0,1)),已知他投籃一次得分的數(shù)學期望為2,則$\frac{2}{a}+\frac{1}{3b}$的最小值為( 。
A.$\frac{32}{3}$B.$\frac{28}{3}$C.$\frac{16}{3}$D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.據(jù)統(tǒng)計,用于數(shù)學學習的時間(單位:小時)與成績(單位:分)近似于線性相關關系.對某小組學生每周用于數(shù)學學習時間x與數(shù)學成績y進行數(shù)據(jù)收集如表:
x1516181922
y10298115115120
由表中樣本數(shù)據(jù)求回歸直線方程$\stackrel{∧}{y}$=bx+a,則點(a,b)與直線x+18y=110的位置關系為是( 。
A.點在直線左側(cè)B..點在直線右側(cè)C..點在直線上D.無法確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.設集合A={x|x-3<0},B={y|y=2x,x∈[1,2]},則A∩B=( 。
A.B.(1,3)C.[2,3)D.(1,4]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知函數(shù)f(x)=$\left\{\begin{array}{l}{f(x-5)\\;x>2}\\{a{e}^{x}\\;x≤2}\end{array}\right.$,若f(2017)=e2,則a=( 。
A.2B.1C.-1D.-2

查看答案和解析>>

同步練習冊答案