【題目】已知函數(shù)f(x)=|2x﹣1|﹣x,
(1)用分段函數(shù)的形式表示該函數(shù),并畫出該函數(shù)的圖象;
(2)寫出該函數(shù)的值域、單調(diào)區(qū)間(不要求證明);
(3)若對任意x∈R,不等式|2x﹣1|≥a+x恒成立,求實數(shù)a的取值范圍.

【答案】
(1)解:∵函數(shù)f(x)=|2x﹣1|﹣x=

函數(shù)的圖象如下圖所示:


(2)解:由圖可得:函數(shù)的值域為:[﹣ ,+∞);

單調(diào)減區(qū)間為:為:(﹣∞, ],單調(diào)增區(qū)間為:[ ,+∞)


(3)解:若對任意x∈R,不等式|2x﹣1|≥a+x恒成立,

則a≤|2x﹣1|﹣x恒成立,

即a≤﹣


【解析】(1)利用零點分段法,可將函數(shù)解析式化為分段函數(shù),進而結(jié)合一次函數(shù)的圖象和性質(zhì),得到函數(shù)的圖象;(2)數(shù)形結(jié)合,可得函數(shù)的值域、單調(diào)區(qū)間;(3)若對任意x∈R,不等式|2x﹣1|≥a+x恒成立,則a≤|2x﹣1|﹣x的最小值.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知定義在R上的奇函數(shù)f(x),當x>0時,f(x)=﹣x2+2x
(1)求函數(shù)f(x)在R上的解析式;
(2)若函數(shù)f(x)在區(qū)間[﹣1,a﹣2]上單調(diào)遞增,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列各組函數(shù)中表示同一函數(shù)的是(
①f(x)= 與g(x)=x
②f(x)=|x|與g(x)=
③f(x)=x0與g(x)=
④f(x)=x2﹣2x﹣1與g(t)=t2﹣2t﹣1.
A.①③
B.②③
C.③④
D.①④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某電視臺舉行一個比賽類型的娛樂節(jié)目, 兩隊各有六名選手參賽,將他們首輪的比賽成績作為樣本數(shù)據(jù),繪制成莖葉圖如圖所示,為了增加節(jié)目的趣味性,主持人故意將隊第六位選手的成績沒有給出,并且告知大家隊的平均分比隊的平均分多4分,同時規(guī)定如果某位選手的成績不少于21分,則獲得“晉級”.

(1)根據(jù)莖葉圖中的數(shù)據(jù),求出隊第六位選手的成績;

(2)主持人從隊所有選手成績中隨機抽2個,求至少有一個為“晉級”的概率;

(3)主持人從兩隊所有選手成績分別隨機抽取2個,記抽取到“晉級”選手的總?cè)藬?shù)為,求的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】集合M={x|﹣2≤x≤2,N=y|0≤y≤2}.給出下列四個圖形,其中能表示以M為定義域,N為值域的函數(shù)關(guān)系是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某企業(yè)生產(chǎn)一種機器的固定成本為0.5萬元,但每生產(chǎn)1百臺時,又需可變成本(即另增加投入)0.25萬元.市場對此商品的年需求量為5百臺,銷售的收入(單位:萬元)函數(shù)為:R(x)=5x﹣ x2(0≤x≤5),其中x是產(chǎn)品生產(chǎn)的數(shù)量(單位:百臺).
(1)將利潤表示為產(chǎn)量的函數(shù);
(2)年產(chǎn)量是多少時,企業(yè)所得利潤最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)y=f(x)在R上為奇函數(shù),當x>0時,f(x)=3x2﹣9,則f(﹣2)=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖是一個邊長為的正三角形和半圓組成的圖形,現(xiàn)把沿直線AB折起使得與圓所在平面垂直,已知點C是半圓的一個三等分點(靠左邊一點),點E是線段PB上的點,(1)當點EPB的中點時,在圓弧上找一點Q,使得平面;(2)當二面角的正切值為時,求BE的長。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】近期中央電視臺播出的《中國詩詞大會》火遍全國.某選拔賽后,隨機抽取100名選手的成績,按成績由低到高依次分為第1,2,3,4,5組,制成頻率分布直方圖如下圖所示:

(I)在第3、4、5組中用分層抽樣抽取5名選手,求第3、4、5組每組各抽取多少名選手;

(II)在(I)的前提下,在5名選手中隨機抽取2名選手,求第4組至少有一名選手被抽取的概率.

查看答案和解析>>

同步練習冊答案