已知x,y滿足不等式組
x+2y≤8
2x+y≤8
x≥0
y≥0
則目標(biāo)函數(shù)z=3x+y的最大值為( 。
分析:作出題中不等式組表示的平面區(qū)域,得如圖的四邊形OABC及其內(nèi)部,再將目標(biāo)函數(shù)z=2x+y對應(yīng)的直線進(jìn)行平移,可得當(dāng)x=4,y=0時,z=3x+y取得最大值為12.
解答:解:作出不等式組
x+2y≤8
2x+y≤8
x≥0
y≥0
表示的平面區(qū)域,
得到如圖的四邊形OABC及其內(nèi)部,
其中O(0,0),A(4,0),B(
8
3
,
8
3
),C(0,8)
設(shè)z=F(x,y)=3x+y,將直線l:z=3x+y進(jìn)行平移,
當(dāng)l經(jīng)過點A時,目標(biāo)函數(shù)z達(dá)到最大值
∴z最大值=F(4,0)=12
故選:B
點評:本題給出二元一次不等式組,求目標(biāo)函數(shù)z=3x+y的最大值,著重考查了二元一次不等式組表示的平面區(qū)域和簡單的線性規(guī)劃等知識,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知x,y滿足不等式組
x-y-1≥0
x+y-1≤0
x+2y+1≥0
則z=20-2y+x的最大值是(  )
A、21B、23C、25D、27

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x,y滿足不等式組
x+y≤4
ax+by-2a≤0
,且目標(biāo)函數(shù)z=2x+y的最大值為7,則a+b=
0
0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x、y滿足不等式
2x+y≤6
x+y≤5
x≥0,y≥0
,在這些點中,使目標(biāo)函數(shù)z=6x+8y取得最大值的點的坐標(biāo)是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•安徽模擬)已知x,y滿足不等式組
x+y≤4
ax+by-2a≤0
,且目標(biāo)函數(shù)z=2x+y的最大值為7,則a+b=
0
0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•南匯區(qū)二模)(文)已知x,y滿足不等式組
x-y-1≥0
x+y-1≤0
x+2y+1≥0
則z=20-2y+x的最大值=
27
27

查看答案和解析>>

同步練習(xí)冊答案