已知線段AB是雙曲線的過焦點(diǎn)的弦,且另一焦點(diǎn)到AB兩端點(diǎn)距離之和等于15,則弦長|AB|=

[    ]

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知線段BC和平面內(nèi)任意一點(diǎn)A,若線段AB、BC、AC的長度依次成等差數(shù)列,則A點(diǎn)的運(yùn)動(dòng)軌跡是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•福建模擬)已知中心的坐標(biāo)原點(diǎn),以坐標(biāo)軸為對稱軸的雙曲線C過點(diǎn)Q(2,
3
3
)
,且點(diǎn)Q在x軸上的射影恰為該雙曲線的一個(gè)焦點(diǎn)F1
(Ⅰ)求雙曲線C的方程;
(Ⅱ)命題:“過橢圓
x2
25
+
y2
16
=1
的一個(gè)焦點(diǎn)F作與x軸不垂直的任意直線l”交橢圓于A、B兩點(diǎn),線段AB的垂直平分線交x軸于點(diǎn)M,則
|AB|
|FM|
為定值,且定值是
10
3
”.命題中涉及了這么幾個(gè)要素:給定的圓錐曲線E,過該圓錐曲線焦點(diǎn)F的弦AB,AB的垂直平分線與焦點(diǎn)所在的對稱軸的交點(diǎn)M,AB的長度與F、M兩點(diǎn)間距離的比值.試類比上述命題,寫出一個(gè)關(guān)于拋物線C的類似的正確命題,并加以證明
(Ⅲ)試推廣(Ⅱ)中的命題,寫出關(guān)于圓錐曲線(橢圓、雙曲線、拋物線)的統(tǒng)一的一般性命題(不必證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
,點(diǎn)A、B在雙曲線的右支上,線段AB經(jīng)過雙曲線的右焦點(diǎn)F2,|AB|=m,另一焦點(diǎn)為F1,那么△ABF1的周長是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

已知線段BC和平面內(nèi)任意一點(diǎn)A,若線段AB、BC、AC的長度依次成等差數(shù)列,則A點(diǎn)的運(yùn)動(dòng)軌跡是


  1. A.
  2. B.
    橢圓
  3. C.
    雙曲線
  4. D.
    拋物線

查看答案和解析>>

同步練習(xí)冊答案