分析 由已知得f(-2016)=0,從而f(f(-2016))=f(0)=π,進(jìn)而f(f(f(-2016)))=f(π),由此能求出結(jié)果.
解答 解:∵函數(shù)f(x)=$\left\{\begin{array}{l}{x^2}+1(x>0)\\ π(x=0)\\ 0(x<0)\end{array}$,
∴f(-2016)=0,
f(f(-2016))=f(0)=π,
f(f(f(-2016)))=f(π)=π2+1.
故答案為:π2+1.
點(diǎn)評 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運(yùn)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -2 | B. | 2 | C. | 3 | D. | -3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)=$\frac{{x}^{2}-1}{x-1}$,g(x)=x+1 | B. | y=x0與g(x)=$\frac{1}{{x}^{0}}$ | ||
C. | f(x)=|x|,g(x)=$\sqrt{{x}^{2}}$ | D. | f(x)=$\sqrt{x+1}$•$\sqrt{x-1}$,g(x)=$\sqrt{{x}^{2}-1}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {1,2} | B. | {1} | C. | {2,3} | D. | {1,2,3} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2n-1 | B. | 2n+1-2 | C. | ${2^{\frac{n}{2}}}-\sqrt{2}$ | D. | ${2^{\frac{n-2}{2}}}-\sqrt{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com