已知,0≤a<b<r<2π,cosa+cosb+cosr=0,sina+sinb+sinr=0,求b-a.
考點(diǎn):三角函數(shù)中的恒等變換應(yīng)用,兩角和與差的正弦函數(shù)
專題:三角函數(shù)的求值
分析:首先對(duì)已知條件cosa+cosb+cosr=0,sina+sinb+sinr=0進(jìn)行恒恒變形,然后利用任意角的三角恒等式進(jìn)行變換,根據(jù)角的取值范圍和三角函數(shù)值求的結(jié)果.
解答: 解:∵cosa+cosb+cosr=0
∴cosa+cosb=-cosr  ①
∵sina+sinb+sinr=0
∴sina+sinb=-sinr  ②
2+②2得:
2(cosbcosa+sinbsina)=-1
cos(b-a)=-
1
2

∵0≤a<b<2π
∴0<b-a<2π
b-a=
3
3

故答案為:
3
3
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn):任意角的三角恒等式,兩角差的余弦公式的倒用及角的討論問(wèn)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若不等式2x-1>m(x2-1)對(duì)-
1
2
≤x≤
1
2
都成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)集合A={x|x2+4x=0},B={x|x2+2﹙a+1﹚x+a2-1=0},若A∪B=B,求a的值組成的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

當(dāng)函數(shù)y=x•2x取極小值時(shí),x=( 。
A、
1
ln2
B、-
1
ln2
C、-ln2
D、ln2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}中,a1=1,a1a2a3…an=n2(n>1),求
(1)a3+a5
(2)an

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在共有2001項(xiàng)的等差數(shù)例中,等式(a1+a3+…+a2001)-(a2+a4+…+a2000)=a1001成立,類比上述性質(zhì),相應(yīng)的,在共有31項(xiàng)的等比數(shù)例{bn}中,有等式
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a1=1,當(dāng)n>1時(shí)an>a1,(n-3)(an2+3an=(n-1)[a(n-1)]2+1(n≥2,n∈N*),求an的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知F1,F(xiàn)2是中心在原點(diǎn),對(duì)稱軸為坐標(biāo)軸的雙曲線的左右焦點(diǎn),以原點(diǎn)為圓心,以半焦距c為半徑的圓與雙曲線在第一象限的交點(diǎn)為A,與y軸正半軸交點(diǎn)為B,點(diǎn)A在y軸上的射影為H,且
OH
=(3+2
3
HB
,則雙曲線的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求函數(shù)y=
1-2x
2x+4
,其中x∈[-4,-3]∪(-1,2]的值域.

查看答案和解析>>

同步練習(xí)冊(cè)答案