閱讀如圖的程序框圖,運行相應(yīng)的程序,若輸出S=
2013
2014
,則判斷框內(nèi)應(yīng)填入(  )
A、i≥2014
B、i≥2015
C、i>2014
D、i>2015
考點:程序框圖
專題:算法和程序框圖
分析:本循環(huán)結(jié)構(gòu)是經(jīng)過n次循環(huán),計算S=
1
1×2
+
1
2×3
+
1
3×4
+…+
1
i×(i+1)
,由此能求出結(jié)果.
解答: 解:經(jīng)過i次循環(huán),
計算S=
1
1×2
+
1
2×3
+
1
3×4
+…+
1
i×(i+1)

=(1-
1
2
)+(
1
2
-
1
3
)+(
1
3
-
1
4
)+…+(
1
i
-
1
i+1
)=1-
1
i+1
=
i
i+1
,
∵程序框圖輸出的結(jié)果是
2013
2014

i
i+1
=
2013
2014
,
∴i=2013.
∴即循環(huán)變量的終值為2013,
即i≥2014時退出循環(huán),
故選A.
點評:本題考查循環(huán)結(jié)構(gòu)的應(yīng)用,是基礎(chǔ)題.解題時要認真審題,仔細解答.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

函數(shù)y=x2sinx的導(dǎo)數(shù)為( 。
A、y′=x2cosx-2xsinx
B、y′=2xsinx+x2cosx
C、y′=2xsinx-x2cosx
D、y′=xcosx-x2sinx

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列函數(shù)中,最小值不是2的是( 。
A、f(x)=x+
1
x
(x>0)
B、f(x)=3+sinx
C、f(x)=3x+3-x
D、f(x)=log2x+logx2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=ex-ax的一條切線經(jīng)過原點,切點的縱坐標為e-1,則a的值是(  )
A、1
B、e
C、-1
D、
1
e

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若曲線f(x)=alnx+bx3+csinx+d;(a,b,c,d均為常數(shù))在x=2014處的切線方程為y+x-2014=0,則f(2014)+f′(2014)=( 。
A、2013B、2012
C、-1D、0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若曲線f(x)=asinx+1在x=0處的切線斜率為2,則(ax2-
1
x
5展開式中x的系數(shù)為( 。
A、40B、10
C、-10D、-40

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知在△ABC中,AB=3,∠A=60°,∠A的平分線AD交邊BC于點D,且
AD
AC
+
1
6
AB
(λ∈R),則AD的長為( 。
A、
3
2
B、
3
C、1
D、2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a2+b2≤1,則關(guān)于x的方程x2-2ax+b2=0有兩個不同的實數(shù)根的概率為( 。
A、
1
16
B、
1
8
C、
1
4
D、
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線C:y2=4x焦點為F,過F的直線交拋物線C于A,B兩點,l1、l2分別過點A、B且與拋物線C相切,P為l1、l2的交點.
(1)求證:動點P在一條定直線上,并求此直線方程;
(2)設(shè)C、D為直線l1、l2與直線x=4的交點,△PCD面積為S1,△PAB面積為S2,求
S1
S2
的取值范圍.

查看答案和解析>>

同步練習冊答案