【題目】已知Sn是等差數(shù)列{an}的前n項(xiàng)和,公差為d,且S2015>S2016>S2014 , 下列五個(gè)命題:①d>0;②S4029>0;③S4030<0;④數(shù)列{Sn}中的最大項(xiàng)為S2015;⑤|a2015|>|a2016|.
其中正確結(jié)論的序號(hào)是 . (寫(xiě)出所有正結(jié)論的序號(hào))

【答案】②④⑤
【解析】解:Sn是等差數(shù)列{an}的前n項(xiàng)和,公差為d,且S2015>S2016>S2014 ,
∴等差數(shù)列的前2015項(xiàng)和最大,故a1>0,d<0,
且前2015項(xiàng)為正數(shù),從第2016項(xiàng)開(kāi)始為負(fù)數(shù),故①錯(cuò)誤,④正確;
再由S2016>S2014 , 可得S2016﹣S2014=a2015+a2016>0,
∴a2015>﹣a2016 , 即⑤|a2015|>|a2016|,故⑤正確;
S4029= (a1+a4029)= ×2a2015>0,故②正確;
S4030= (a1+a4030)=2015(a2015+a2016)>0,故③錯(cuò)誤.
所以答案是:②④⑤.
【考點(diǎn)精析】利用等差數(shù)列的通項(xiàng)公式(及其變式)和等差數(shù)列的前n項(xiàng)和公式對(duì)題目進(jìn)行判斷即可得到答案,需要熟知通項(xiàng)公式:;前n項(xiàng)和公式:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直三棱柱中, , 為線(xiàn)段的中點(diǎn).

(Ⅰ)求證:

(Ⅱ)若直線(xiàn)與平面所成角的正弦值為,求的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校高二年級(jí)學(xué)生會(huì)有理科生4名,其中3名男同學(xué);文科生3名,其中有1名男同學(xué).從這7名成員中隨機(jī)抽4人參加高中示范校驗(yàn)收活動(dòng)問(wèn)卷調(diào)查.

(Ⅰ)設(shè)為事件“選出的4人中既有文科生又有理科生”,求事件的概率;

(Ⅱ)設(shè)為選出的4人中男生人數(shù)與女生人數(shù)差的絕對(duì)值,求隨機(jī)變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x3﹣x+3. (Ⅰ)求f(x)在x=1處的切線(xiàn)方程;
(Ⅱ)求f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)= x3﹣2ax2﹣3x(a∈R). (Ⅰ)若f(x)在區(qū)間(﹣1,1)內(nèi)為減函數(shù),求實(shí)數(shù)a的取值范圍;
(Ⅱ)對(duì)于實(shí)數(shù)a的不同取值,試討論y=f(x)在(﹣1,1)內(nèi)的極值點(diǎn)的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知△ABC的外接圓半徑為1,角A,B,C的對(duì)邊分別為a,b,c,且2acosA=ccosB+bcosC.
(1)求cosA及a的值;
(2)若b2+c2=4,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平面ABCD⊥平面ADEF,四邊形ABCD為菱形,四邊形ADEF為矩形,M、N分別是EF、BC的中點(diǎn),AB=2AF=2,∠CBA=60°.

(1)求證:AN⊥DM;
(2)求直線(xiàn)MN與平面ADEF所成的角的正切值;
(3)求三棱錐D﹣MAN的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系 中,以原點(diǎn) 為極點(diǎn),以 軸正半軸為極軸,建立極坐標(biāo)系,曲線(xiàn) 的極坐標(biāo)方程為 ,曲線(xiàn) 的參數(shù)方程為
(1)求曲線(xiàn) 的直角坐標(biāo)方程與曲線(xiàn) 的普通方程;
(2)試判斷曲線(xiàn) 是否存在兩個(gè)交點(diǎn)?若存在,求出兩交點(diǎn)間的距離;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,四個(gè)頂點(diǎn)構(gòu)成的菱形的面積是4,圓過(guò)橢圓的上頂點(diǎn)作圓的兩條切線(xiàn)分別與橢圓相交于兩點(diǎn)(不同于點(diǎn)),直線(xiàn)的斜率分別為.

(1)求橢圓的方程;

(2)當(dāng)變化時(shí),①求的值;②試問(wèn)直線(xiàn)是否過(guò)某個(gè)定點(diǎn)?若是,求出該定點(diǎn);若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案