17.在等差數(shù)列{an}中,a3+a9=18-a6,Sn表示數(shù)列{an}的前n項(xiàng)和,則S11=( 。
A.66B.99C.198D.297

分析 根據(jù)等差數(shù)列的性質(zhì)可知a3+a9=18-a6=2a6,然后根據(jù)等差數(shù)列的求和公式解之即可求出所求

解答 解:∵a3+a9=18-a6=2a6,
∴a6=6,
∴S11=$\frac{11({a}_{1}+{a}_{11})}{2}$=11a6=66,
故選:A

點(diǎn)評(píng) 本題主要考查了等差數(shù)列的性質(zhì),以及等差數(shù)列的求和公式,熟練掌握性質(zhì)及公式是解本題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若離散型隨機(jī)變量X的分布列為:
 X 0 1
 P 10a2-a 2-6a
則實(shí)數(shù)a的值為$\frac{1}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知函數(shù)f(x)=log${\;}_{\frac{1}{e}}}$(x2+$\frac{1}{e}$)-|${\frac{x}{e}}$|,則使得f(x+1)<f(2x-1)成立x的范圍是(0,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.當(dāng)正數(shù)a,b,滿足$\frac{4}{a+5b}+\frac{1}{3a+2b}=6$時(shí),則4a+7b的最小值$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.2015年9月3日,抗戰(zhàn)勝利70周年紀(jì)念活動(dòng)在北京隆重舉行,收到全國(guó)人民的矚目.紀(jì)念活動(dòng)包括舉行紀(jì)念大會(huì)、閱兵式、招待會(huì)和文藝晚會(huì)等,據(jù)統(tǒng)計(jì),抗戰(zhàn)老兵由于身體原因,參加紀(jì)念大會(huì)、閱兵式、招待會(huì)這三個(gè)環(huán)節(jié)(可參加多個(gè),也可都不參加)的情況及其概率如表所示:
參加紀(jì)念活動(dòng)的環(huán)節(jié)數(shù)0123
概率$\frac{1}{6}$mn$\frac{1}{3}$
(1)若m=2n,則從這60名抗戰(zhàn)老兵中按照參加紀(jì)念活動(dòng)的環(huán)節(jié)數(shù)分層抽取6人進(jìn)行座談,求參加紀(jì)念活動(dòng)環(huán)節(jié)數(shù)為1的抗戰(zhàn)老兵中抽取的人數(shù);
(2)某醫(yī)療部門決定從(1)中抽取的6名抗戰(zhàn)老兵中隨機(jī)抽取2名進(jìn)行體檢,求這2名抗戰(zhàn)老兵中至少有1人參加紀(jì)念活動(dòng)的環(huán)節(jié)數(shù)為3的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知向量$\overrightarrow{m}$=(sinA,$\frac{1}{2}$)與向量$\overrightarrow{n}$=(3,sinA+$\sqrt{3}$cosA)共線,其中A是△ABC的內(nèi)角.
(1)求角A的大。
(2)若BC=4,求△ABC的面積S的最大值,并判斷S取得最大值時(shí)△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)集合A={x∈Z|(x+1)(x-4)=0},B={x|x≤a},若A∩B=A,則a的值可以是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.在四邊形ABCD中,$\overrightarrow{AB}$=$\overrightarrow{a}$+2$\overrightarrow$,$\overrightarrow{BC}$=-4$\overrightarrow{a}$-$\overrightarrow$,$\overrightarrow{CD}$=-5$\overrightarrow{a}$-3$\overrightarrow$,則四邊形ABCD的形狀是(  )
A.長(zhǎng)方形B.平行四邊形C.菱形D.梯形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若x,y滿足約束條件$\left\{\begin{array}{l}{x-1≥0}\\{x-y≤0}\\{x+y-4≤0}\end{array}\right.$,則z=2x-y+1的取值范圍為(  )
A.[0,1]B.[0,2]C.[0,3]D.[2,3]

查看答案和解析>>

同步練習(xí)冊(cè)答案