精英家教網 > 高中數學 > 題目詳情
已知圓(x-2)2+y2=1經過橢圓=1(ab>0)的一個頂點和一個焦點,則此橢圓的離心率e=
A.1B.C.D.
D
有圖形位置關系知:園過點和點 C為半焦距,于是
由于解得 故選D
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

已知橢圓的中心在原點,焦點在軸上,離心率為,它與直線相交于P、Q兩點,若,求橢圓方程。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(普通班)已知橢圓ab>0)的焦距為4,且與橢圓有相同的離心率,斜率為k的直線l經過點M(0,1),與橢圓C交于不同兩點A、B
(1)求橢圓C的標準方程;
(2)當橢圓C的右焦點F在以AB為直徑的圓內時,求k的取值范圍.
(實驗班)已知函數R).
(Ⅰ)若,求曲線在點處的的切線方程;
(Ⅱ)若對任意恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知平面上的動點P(x,y)及兩定點A(-2,0),B(2,0),直線PAPB的斜率分別是k1,k2,且k1·k2=-.
(1)求動點P的軌跡C的方程;
(2)已知直線lykxm與曲線C交于MN兩點,且直線BM、BN的斜率都存在,并滿足kBM·kBN=-,求證:直線l過原點.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知橢圓的離心率為,直線過點,,且與橢圓相切于點
(Ⅰ)求橢圓的方程;
(Ⅱ)過點的動直線與曲線相交于不同的兩點、,曲線在點、處的切線交于點.試問:點是否在某一定直線上,若是,試求出定直線的方程;否則,請說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本題滿分12分) 設橢圓 C1)的一個頂點與拋物線 C2 的焦點重合,F1,F2 分別是橢圓的左、右焦點,離心率 ,過橢圓右焦點 F2 的直線  與橢圓 C 交于 M,N 兩點.
(I)求橢圓C的方程;
(II)是否存在直線 ,使得 ,若存在,求出直線  的方程;若不存在,說明理由;
(III)若 AB 是橢圓 C 經過原點 O 的弦,MN//AB,求證: 為定值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

與橢圓共焦點且過點的雙曲線方程是 (    )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

如圖,已知橢圓的左頂點為,左焦點為,上頂點為,若,則該橢圓的離心率是          .

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

設橢圓軸交于兩點,兩焦點將線段三等分,焦距為,橢圓上一點到左焦點的距離為,則___________.

查看答案和解析>>

同步練習冊答案