如果實數(shù)xy滿足那么yx是否有最小值?若有,求出最小值;若沒有,請說明理由.

答案:略
解析:

解:將已知圓的方程配方,得

如圖所示,設yx=t,即y=xt

∴求yx的最小值問題,即是求t的最小值問題,也就是求直線y=xt的截距的最小值問題.

(x,y)是已知圓上的點,即直線y=xt必與已知圓有公共點,且截距t應在直線的截距之間,即由于此時的直線都與已知圓相切,

∴圓心(2,0)到直線y=xt的距離應等于

由圖形可知截距t有最小值

 


提示:

要求yx的最小值,不妨令yx=t,即是求t的最小值,即直線y=xt的截距的最小值,又由于點在已知的圓上,因此可結合直線與圓的位置關系及圖形解決.


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2013•房山區(qū)一模)對于實數(shù)x,將滿足“0≤y<1且x-y為整數(shù)”的實數(shù)y稱為實數(shù)x的小數(shù)部分,用記號<x>表示.例<1.2>=0.2,<-1.2>=0.8,<
8
7
>=
1
7
.對于實數(shù)a,無窮數(shù)列{an}滿足如下條件:a1=<a>,an+1=
1
an
 an≠0
0        an=0
,其中n=1,2,3,….
(Ⅰ)若a=
2
,求數(shù)列{an}的通項公式;
(Ⅱ)當a>
1
4
時,對任意的n∈N+,都有an=a,求符合要求的實數(shù)a構成的集合A;
(Ⅲ)若a是有理數(shù),設a=
p
q
 (p是整數(shù),q是正整數(shù),p,q互質),對于大于q的任意正整數(shù)n,是否都有an=0成立,證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對于實數(shù)x,將滿足“0≤y<1且x-y為整數(shù)”的實數(shù)y稱為實數(shù)x的小數(shù)部分,用記號{x}表示.例如{1.2}=0.2,{-1.2}=0.8,{
8
7
}=
1
7
.對于實數(shù)a,無窮數(shù)列{an}滿足如下條件:a1={a},an+1=
1
an
  ,an≠0
0, an=0
  其中n=1,2,3,….
(1)若a=
2
,求a2,a3 并猜想數(shù)列{a}的通項公式(不需要證明);
(2)當a>
1
4
時,對任意的n∈N*,都有an=a,求符合要求的實數(shù)a構成的集合A;
(3)若a是有理數(shù),設a=
p
q
 (p是整數(shù),q是正整數(shù),p,q互質),對于大于q的任意正整數(shù)n,是否都有an=0成立,證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對于實數(shù)x,將滿足“0≤y<1且x-y為整數(shù)”的實數(shù)y稱為實數(shù)x的小數(shù)部分,用記號<x>表示.對于實數(shù)a,無窮數(shù)列{an}滿足如下條件:( i )a1=<a>;(ii)an+1=
1
an
>,(an≠0)
0,(an=0)
,當a
1
2
時,對任意的自然數(shù)n都有an=a,則實數(shù)a=
 

查看答案和解析>>

科目:高中數(shù)學 來源:數(shù)學教研室 題型:044

如果實數(shù)x,y滿足那么y-x是否有最小值?若有,求出最小值;若沒有,請說明理由.

查看答案和解析>>

同步練習冊答案