【題目】在如圖所示的幾何體中,AE⊥平面ABC,CD∥AE,F(xiàn)是BE的中點(diǎn),AC=BC=1,∠ACB=90°,AE=2CD=2.
證明DF⊥平面ABE;

【答案】解:取AB的中點(diǎn)G,連接CG、FG.
因?yàn)镃D∥AE,GF∥AE,所以CD∥GF.
又因?yàn)镃D=1,,所以CD=GF.
所以四邊形CDFG是平行四邊形,DF∥CG.
在等腰Rt△ACB中,G是AB的中點(diǎn),所以CG⊥AB.
因?yàn)镋A⊥平面ABC,CG平面ABC,所以EA⊥CG.
而AB∩EA=A,所以CG⊥平面ABE.
又因?yàn)镈F∥CG,所以DF⊥平面ABE.

【解析】將DF平移到CG的位置,欲證DF⊥平面ABE,即證CG⊥平面ABE,根據(jù)線面垂直的判定定理可知,只需證CG與平面ABE內(nèi)的兩相交直線垂直即可;
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解平面與平面之間的位置關(guān)系的相關(guān)知識(shí),掌握兩個(gè)平面平行沒有交點(diǎn);兩個(gè)平面相交有一條公共直線.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某廠生產(chǎn)某種零件,每個(gè)零件的成本為40元,出廠單價(jià)定為60元,該廠為鼓勵(lì)銷售商訂購,決定當(dāng)一次訂購量超過100個(gè)時(shí),每多訂購一個(gè),訂購的全部零件的出廠單價(jià)就降低0.02元,但實(shí)際出廠單價(jià)不能低于51.

(1)當(dāng)一次訂購量為多少個(gè)時(shí),零件的實(shí)際出廠單價(jià)恰降為51?

(2)設(shè)一次訂購量為個(gè),零件的實(shí)際出廠單價(jià)為.寫出函數(shù)的表達(dá)式;

(3)當(dāng)銷售商一次訂購500個(gè)零件時(shí),該廠獲得的利潤是多少元?如果訂購1000個(gè),利潤又是多少元?(工廠售出一個(gè)零件的利潤=實(shí)際出廠單價(jià)-成本)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下面幾種推理過程是演繹推理的是 ( ).

A. 某校高三有8個(gè)班,1班有51人,2班有53人,3班有52人,由此推測(cè)各班人數(shù)都超過50人

B. 由三角形的性質(zhì),推測(cè)空間四面體的性質(zhì)

C. 平行四邊形的對(duì)角線互相平分,菱形是平行四邊形,所以菱形的對(duì)角線互相平分

D. 在數(shù)列{an}中,a1=1,,,,由此歸納出{an}的通項(xiàng)公式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)yfx)是偶函數(shù),當(dāng)x0時(shí),;當(dāng)x[3,﹣1]時(shí),記fx)的最大值為m,最小值為n,則mn________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】海水養(yǎng)殖場(chǎng)進(jìn)行某水產(chǎn)品的新、舊網(wǎng)箱養(yǎng)殖方法的產(chǎn)量對(duì)比,收獲時(shí)各隨機(jī)抽取了100個(gè)網(wǎng)箱,測(cè)量各箱水產(chǎn)品的產(chǎn)量(單位:kg)其頻率分布直方圖如下:

(1) 表示事件舊養(yǎng)殖法的箱產(chǎn)量低于50kg”,估計(jì)的概率;

(2)填寫下面聯(lián)表,并根據(jù)列聯(lián)表判斷是否有%的把握認(rèn)為箱產(chǎn)量與養(yǎng)殖方法有關(guān):

箱產(chǎn)量

箱產(chǎn)量

舊養(yǎng)殖法

新養(yǎng)殖法

(3)根據(jù)箱產(chǎn)量的頻率分布直方圖,對(duì)兩種養(yǎng)殖方法的優(yōu)劣進(jìn)行比較.

附:

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在長方體ABCD﹣A1B1C1D1中AA1=AD=1,E為CD中點(diǎn).
(Ⅰ)求證:B1E⊥AD1
(Ⅱ)在棱AA1上是否存在一點(diǎn)P,使得DP∥平面B1AE?若存在,求AP的長;若不存在,說明理由.
(Ⅲ)若二面角A﹣B1E﹣A1的大小為30°,求AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如果函數(shù)的定義域?yàn)?/span>,且存在實(shí)常數(shù),使得對(duì)于定義域內(nèi)任意,都有成立,則稱此函數(shù)具有“性質(zhì).

1)判斷函數(shù)是否具有“性質(zhì)”,若具有“性質(zhì)”,求出所有的值的集合,若不具有“性質(zhì)”,請(qǐng)說明理由;

2)已知函數(shù)具有“性質(zhì)”,且當(dāng)時(shí),,求函數(shù)在區(qū)間上的值域;

3)已知函數(shù)既具有“性質(zhì)”,又具有“性質(zhì)”,且當(dāng)時(shí),,若函數(shù)的圖像與直線2017個(gè)公共點(diǎn),求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線C:x2=4y,過點(diǎn)M(0,2)任作一直線與C相交于A,B兩點(diǎn),過點(diǎn)By軸的平行線與直線AO相交于點(diǎn)D(O為坐標(biāo)原點(diǎn)).

(1)證明動(dòng)點(diǎn)D在定直線上;

(2)作C的任意一條切線l(不含x軸),與直線y=2相交于點(diǎn)N1,與(1)中的定直線相交于點(diǎn)N2,證明|MN2|2-|MN1|2為定值,并求此定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,已知b(1+cosC)=c(2﹣cosB).
(Ⅰ)求證:a,c,b成等差數(shù)列;
(Ⅱ)若C= ,△ABC的面積為4 ,求c.

查看答案和解析>>

同步練習(xí)冊(cè)答案