【題目】三棱錐P﹣ABC中,底面△ABC滿足BA=BC, ,P在面ABC的射影為AC的中點,且該三棱錐的體積為 ,當其外接球的表面積最小時,P到面ABC的距離為(
A.2
B.3
C.
D.

【答案】B
【解析】解:設AC的中點為D,連接BD,PD,則PD⊥平面ABC, ∵△ABC是等腰直角三角形,∴外接球的球心O在PD上,
設AB=BC=a,PD=h,外接球半徑OC=OP=R,
則OD=h﹣R,CD= AC= a,
∵VPABC= = = ,∴a2=
∵CD2+OD2=OC2 , 即(h﹣R)2+ a2=R2 ,
∴R= = = ≥3 = ,
當且僅當 即h=3時取等號,
∴當外接球半徑取得最小值時,h=3.
故選:B.

設AB=a,棱錐的高為h,根據(jù)體積得出a與h的關系,根據(jù)勾股定理得出外接球半徑R關于h的表達式,利用基本不等式得出R最小值時對應的h的值即可.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某圓拱橋的圓拱跨度為20 m,拱高為4 m.現(xiàn)有一船,寬10 m,水面以上高3 m,這條船能否從橋下通過?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,且cosC=
(1)求B;
(2)設CM是角C的平分線,且CM=1,b=6,求cos∠BCM.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某地小吃“全羊湯”2008年被中國中醫(yī)學會營養(yǎng)膳食協(xié)會評為“中華名吃”,2010年12月被納入市級非物質文化遺產名錄,打造地方名片.當初向各地作廣告推廣,對銷售收益產生額積極的影響.某年度在若干地區(qū)各投入4萬元廣告費用后,將各地該年度的銷售收益繪制成頻率分布直方圖(如圖所示).由于工作人員操作失誤,橫軸的數(shù)據(jù)丟失,但可以確定橫軸是從0開始計數(shù)的.

(1)根據(jù)頻率分布直方圖,計算圖中各小長方形的寬度;

(2)根據(jù)頻率分布直方圖,估計投入4萬元廣告費用之后,銷售收益的平均值;(以各組區(qū)間中點值代表改組的取值)

(3)又在某一地區(qū)測的另外一些數(shù)據(jù),并整理的得到下表:

廣告投入(單位:萬元)

1

2

3

4

5

銷售收益(單位:百萬元)

2

3

2

7

請將(2)的結果填入空白欄,表中的數(shù)據(jù)之間存在線性相關關系.計算,并預測年度廣告約投入多少萬元時,年銷售收益達到千萬元?(結果精確達到0.1)

參考公式:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的上、下焦點分別為,上焦點到直線 4x+3y+12=0的距離為3,橢圓C的離心率e=

(I)若P是橢圓C上任意一點,求的取值范圍;

(II)設過橢圓C的上頂點A的直線與橢圓交于點B(B不在y軸上),垂直于的直線與交于點M,與軸交于點H,若,且,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四邊形是直角梯形,平面,

(1)求直線與平面所成角的余弦;

(2)求平面和平面所成角的余弦.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】小萌大學畢業(yè)后,家里給了她10萬元,她想辦一個“萌萌”加工廠,根據(jù)市場調研,她得出了一組毛利潤(單位:萬元)與投入成本(單位:萬元)的數(shù)據(jù)如下:

投入成本

0.5

1

2

3

4

5

6

毛利潤

1.06

1.25

2

3.25

5

7.25

9.98

為了預測不同投入成本情況下的利潤,她想在兩個模型中選一個進行預測.

(1)根據(jù)投入成本2萬元和4萬元的兩組數(shù)據(jù)分別求出兩個模型的函數(shù)解析式,請你根據(jù)給定數(shù)據(jù)選出一個較好的函數(shù)模型進行預測(不必說明理由),并預測她投入8萬元時的毛利潤;

(2)若小萌準備最少投入2萬元開辦加工廠,請預測加工廠毛利潤率的最大值,并說明理由.(

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】過拋物線y2=2px(p>0)焦點F的直線與拋物線交于A,B兩點,作AC,BD垂直拋物線的準線l于C,D,其中O為坐標原點,則下列結論正確的是 . (填序號)
;
②存在λ∈R,使得 成立;
=0;
④準線l上任意一點M,都使得 >0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義在R上的函數(shù)yfx).對任意的a,b∈R.滿足:fa+b)=fafb),當x>0時,有fx)>1,其中f(1)=2.

(1)求f(0),f(﹣1)的值;

(2)判斷該函數(shù)的單調性,并證明;

(3)求不等式fx+1)<4的解集.

查看答案和解析>>

同步練習冊答案