5.若tanα=2,則sin2α-sinαcosα=$\frac{2}{5}$.

分析 由條件利用同角三角函數(shù)的基本關(guān)系,求得要求式子的值.

解答 解:∵tanα=2,則sin2α-sinαcosα=$\frac{{sin}^{2}α-sinαcosα}{{sin}^{2}α{+cos}^{2}α}$=$\frac{{tan}^{2}α-tanα}{{tan}^{2}α+1}$=$\frac{4-2}{4+1}$=$\frac{2}{5}$,
故答案為:$\frac{2}{5}$.

點(diǎn)評 本題主要考查同角三角函數(shù)的基本關(guān)系,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知橢圓方程$\frac{x^2}{2}+{y^2}=1$右焦點(diǎn)F、斜率為k的直線l交橢圓于P、Q兩點(diǎn).
(1)求橢圓的兩個(gè)焦點(diǎn)和短軸的兩個(gè)端點(diǎn)構(gòu)成的四邊形的面積;
(2)當(dāng)直線l的斜率為1時(shí),求△POQ的面積;
(3)在線段OF上是否存在點(diǎn)M(m,0),使得以MP、MQ為鄰邊的平行四邊形是菱形?若存在,求出m的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.下列四個(gè)結(jié)論正確的個(gè)數(shù)是( 。
①為調(diào)查中學(xué)生近視情況,測得某校男生150名中有80名近視,在140名女生中有70名近視.在檢驗(yàn)這些學(xué)生眼睛近視是否與性別有關(guān)時(shí),應(yīng)該用獨(dú)立性檢驗(yàn)最有說服力;
②在相關(guān)關(guān)系中,若用${y_1}={c_1}{e^{{c_2}x}}$擬合時(shí)的相關(guān)指數(shù)為${R_1}^2$,用y2=bx+a擬合時(shí)的相關(guān)指數(shù)為${R_2}^2$,且${R_1}^2>{R_2}^2$,則y1的擬合效果較好;
③已知隨機(jī)變量ξ服從正態(tài)分布N(1,σ2),P(ξ≤4)=0.79,則P(ξ≤-2)=0.21;
④設(shè)回歸直線方程為$\widehat{y}$=2-2.5x,當(dāng)變量x增加一個(gè)單位時(shí),$\widehat{y}$平均增加2.5個(gè)單位.
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=log9(9x+1)+kx是偶函數(shù).
(1)求k的值;
(2)設(shè)函數(shù)g(x)=f(x)-$\frac{1}{2}$x-a無零點(diǎn),求a的取值范圍;
(3)設(shè)t(x)=log9(m3x-$\frac{4}{3}$m),若函數(shù)h(x)=f(x)-t(x)有且只有一個(gè)零點(diǎn),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知f(x)是一次函數(shù),且滿足3f(x+1)-2f(x-1)=2x+17
(Ⅰ)求f(x);
(Ⅱ)若F(x)為奇函數(shù)且定義域?yàn)镽,且x>0時(shí),F(xiàn)(x)=f(x),求F(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(2,-1),若k$\overrightarrow{a}$+$\overrightarrow$⊥$\overrightarrow{a}$-2$\overrightarrow$,則k=( 。
A.3B.2C.-3D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖所示是一個(gè)幾何體的三視圖(單位:cm),主視圖和左視圖是底邊長為4,腰長為$2\sqrt{2}$的等腰三角形,俯視圖是邊長為4的正方形,求幾何體的表面積和體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.質(zhì)點(diǎn)在數(shù)軸上的區(qū)間[0,2]上運(yùn)動,假定質(zhì)點(diǎn)出現(xiàn)在該區(qū)間各點(diǎn)處的概率相等,那么質(zhì)點(diǎn)落在區(qū)間[0,1]上的概率為(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.以上都不對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=ln(x+a)-x2-x在x=0處取得極值.
(1)求實(shí)數(shù)a的值,并討論f(x)的單調(diào)性;
(2)證明:對任意的正整數(shù)n,不等式2+$\frac{3}{4}$+$\frac{4}{9}$+…+$\frac{n+1}{{n}^{2}}$>ln(n+1)都成立.

查看答案和解析>>

同步練習(xí)冊答案