函數(shù)y=kx+b,其中k,b(k≠0)是常數(shù),其圖象是一條直線,稱這個函數(shù)為線性函數(shù),對于非線性可導(dǎo)函數(shù)f(x),在點x0附近一點x的函數(shù)值f(x),可以用如下方法求其近似代替值:f(x)≈f(x0)+f'(x0)(x-x0),利用這一方法,數(shù)學(xué)公式的近似代替值是________.

1.999
分析:根據(jù)題意先找函數(shù)并求出導(dǎo)函數(shù),然后研究函數(shù)的單調(diào)性,再在3.996附近選擇合理的值進(jìn)行求解近似代替值即可.
解答:由題意可知f(x)=,f'(x)=>0
∴f(x)在(0,+∞)上單調(diào)遞增
選擇3.996附近的點x0=4>3.996
∴f(4)+f′(4)(3.996-4)=2-×0.004=1.999,
故答案為:1.999.
點評:本題主要考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,以及導(dǎo)數(shù)的幾何意義,同時考查了計算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=kx+b,其中k,b(k≠0)是常數(shù),其圖象是一條直線,稱這個函數(shù)為線性函數(shù).對于非線性可導(dǎo)函數(shù)f(x),在點x0附近一點x的函數(shù)值f(x),可以用如下方法求其近似代替值:f(x)≈f(x0)+f′(x0)(x-x0).利用這一方法,m=
3.998
的近似代替值( 。
A、大于m
B、小于m
C、等于m
D、與m的大小關(guān)系無法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法正確的是
①③④
①③④

①函數(shù)y=kx+b(k≠0,x∈R)有且只有一個零點
②二次函數(shù)在其定義域內(nèi)一定有兩個零點
③指數(shù)函數(shù)在其定義域內(nèi)沒有零點
④對數(shù)函數(shù)在其定義域內(nèi)有且只有一個零點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=kx+b,其中k,b是常數(shù),其圖象是一條直線,稱這個函數(shù)為線性函數(shù),而對于非線性可導(dǎo)函數(shù)f(x),在已知點x0附近一點x的函數(shù)值f(x)可以用下面方法求其近似代替值,f(x),利≈f(x0)+f′(x0)(x-x0)用這一方法,對于實數(shù)m=
4.002
,取x0的值為4,則m的近似代替值是
2.005
2.005

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=kx+b,其中k,b(k≠0)是常數(shù),其圖象是一條直線,稱這個函數(shù)為線性函數(shù),對于非線性可導(dǎo)函數(shù)f(x),在點x0附近一點x的函數(shù)值f(x),可以用如下方法求其近似代替值:f(x)≈f(x0)+f'(x0)(x-x0),利用這一方法,m=
3.996
的近似代替值是
1.999
1.999

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=kx+b,其中k,b(k≠0)是常數(shù),其圖象是一條直線,稱這個函數(shù)為線性函數(shù).而對于非線性可導(dǎo)函數(shù)f(x),在已知點
x0附近一點x的函數(shù)值f(x),可以用如下方法求其近似代替值:f(x)≈f(x0)+f(x0)(x-x0).利用這一方法,對于實數(shù)
m=
3.998
,取x0=4,則m的近似代替值
m.(填“>”或“<”或“=”)

查看答案和解析>>

同步練習(xí)冊答案