在直角坐標(biāo)系中,以O(shè)為圓心的圓與直線相切.
(1)求圓O的方程;
(2)圓O與軸相交于兩點(diǎn),圓內(nèi)的動點(diǎn)滿足,
求的取值范圍.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓心為的圓經(jīng)過點(diǎn).
(1)求圓的標(biāo)準(zhǔn)方程;
(2)若直線過點(diǎn)且被圓截得的線段長為,求直線的方程;
(3)是否存在斜率是1的直線,使得以被圓所截得的弦EF為直徑的圓經(jīng)過
原點(diǎn)?若存在,試求出直線的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓G:+y2=1.過軸上的動點(diǎn)(m,0)作圓x2+y2=1的切線l交橢圓G于A,B兩點(diǎn).
(1)求橢圓G上的點(diǎn)到直線的最大距離;
(2)①當(dāng)實(shí)數(shù)時,求A,B兩點(diǎn)坐標(biāo);
②將|AB|表示為m的函數(shù),并求|AB|的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,圓與圓交于兩點(diǎn),以為切點(diǎn)作兩圓的切線分別交圓和圓于兩點(diǎn),延長交圓于點(diǎn),延長交圓于點(diǎn).已知.
(1)求的長;
(2)求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知是橢圓上兩點(diǎn),點(diǎn)M的坐標(biāo)為.
(1)當(dāng)兩點(diǎn)關(guān)于軸對稱,且為等邊三角形時,求的長;
(2)當(dāng)兩點(diǎn)不關(guān)于軸對稱時,證明:不可能為等邊三角形.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓:,點(diǎn),直線.
(1)求與圓相切,且與直線垂直的直線方程;
(2)在直線上(為坐標(biāo)原點(diǎn)),存在定點(diǎn)(不同于點(diǎn)),滿足:對于圓上的任一點(diǎn),都有為一常數(shù),試求出所有滿足條件的點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知☉O:x2+y2=1和定點(diǎn)A(2,1),由☉O外一點(diǎn)P(a,b)向☉O引切線PQ,切點(diǎn)為Q,且滿足|PQ|=|PA|.
(1)求實(shí)數(shù)a,b間滿足的等量關(guān)系.
(2)求線段PQ長的最小值.
(3)若以P為圓心所作的☉P與☉O有公共點(diǎn),試求半徑取最小值時☉P的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com