(本小題滿分12分)
如圖,在多面體中,平面∥平面, ⊥平面,,,
 ,

(Ⅰ)求證:平面;
(Ⅱ)求證:∥平面;
(Ⅲ)求二面角的余弦值.

(Ⅰ)平面∥平面,,又四邊形為平行四邊形, ,平面
(Ⅱ)設(shè)的中點(diǎn)為,連接,則,,∴四邊形是平行四邊形,∴,由(Ⅰ)知,為平行四邊形,∴,∴,∴,又平面,故 ∥平面;
(Ⅲ)-

解析試題分析:(Ⅰ)平面∥平面,平面平面,平面平面,   ………1分
四邊形為平行四邊形, ……2分
平面……3分

(Ⅱ)設(shè)的中點(diǎn)為,連接,則,
,∴四邊形是平行四邊形…………4分
,由(Ⅰ)知,為平行四邊形,∴,∴,
∴四邊形是平行四邊形,…………5分
,又平面,故 ∥平面;…………6分

(Ⅲ)由已知,兩兩垂直,建立如圖的空間坐標(biāo)系,則

設(shè)平面的法向量為,則,
,則,而平面的法向量

由圖形可知,二面角的余弦值-.……………………12分
考點(diǎn):本題考查了空間中的線面角的求法
點(diǎn)評(píng):高考中?疾榭臻g中平行關(guān)系與垂直關(guān)系的證明以及幾何體體積的計(jì)算,這是高考的重點(diǎn)內(nèi)容.證明的關(guān)鍵是熟練掌握并靈活運(yùn)用相關(guān)的判定定理與性質(zhì)定理.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=900。

求證:(1)PC⊥BC;
(2)求點(diǎn)A到平面PBC的距離。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在三棱錐P -ABC中,點(diǎn)P在平面ABC上的射影D是AC的中點(diǎn).BC ="2AC=8,AB" =

(I )證明:平面PBC丄平面PAC
(II)若PD =,求二面角A-PB-C的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題12分)
如圖,在中,邊上的高,,沿翻折,使得得幾何體

(Ⅰ)求證:
(Ⅱ)求點(diǎn)D到面ABC的距離。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)
如圖,在三棱錐中,,,, 點(diǎn)分別在棱上,且,

(Ⅰ)求證:平面PAC
(Ⅱ)當(dāng)的中點(diǎn)時(shí),求與平面所成的角的正弦值;
(Ⅲ)是否存在點(diǎn)使得二面角為直二面角?并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分14分)
如圖,在底面是直角梯形的四棱錐S-ABCD中, 


(1)求四棱錐S-ABCD的體積;
(2)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在中,點(diǎn)的中點(diǎn),點(diǎn)的中點(diǎn),的延長(zhǎng)線交與點(diǎn)。

(1)求的值;
(2)若的面積為,四邊形的面積為,求的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分10分)
如圖,在棱長(zhǎng)為3的正方體中,.

⑴求兩條異面直線所成角的余弦值;
⑵求平面與平面所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分14分)
如圖,已知平面QBC與直線PA均垂直于所在平面,且PA=AB=AC.

(Ⅰ)求證:PA∥平面QBC;
(Ⅱ)若,求二面角Q-PB-A的余弦值。

查看答案和解析>>

同步練習(xí)冊(cè)答案