分析 (1)拋物線的通徑為2p=4,可得p=2,進(jìn)而得到拋物線方程;
(2)求出A的坐標(biāo),即可得到OA的長.
解答 解:(1)∵拋物線的通徑為2p=4,∴p=2,
∴拋物線C的方程為x2=4y (5分)
(2)∵△AOB為正三角形.由拋物線的幾何性質(zhì)知:OA,OB關(guān)于y軸對稱
∴設(shè)直線OA的方程為y=$\sqrt{3}x$,由 $\left\{\begin{array}{l}{{x}^{2}=4y}\\{y=\sqrt{3}x}\end{array}\right.$得 x2=4$\sqrt{3}x$,(8分)
∴xA=4$\sqrt{3}$myA=12,(10分)
∴|OA|=8$\sqrt{3}$ (14分)
點(diǎn)評 本題考查拋物線的定義、方程和性質(zhì),考查學(xué)生的計(jì)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $y=sin(\frac{x}{2}-\frac{π}{4})$ | B. | $y=sin(2x-\frac{π}{6})$ | C. | $y=sin({2x-\frac{3π}{2}})$ | D. | $y=sin(\frac{x}{2}-\frac{2π}{3})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 6 | B. | 7 | C. | 8 | D. | 9 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{1}{4}$ | B. | 5 | C. | $\frac{4}{5}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -6 | B. | -3 | C. | 3 | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com