【題目】已知數(shù)列{an}滿足:a1=1,nan+1﹣(n+1)an=1(n∈N+)
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若 ,求數(shù)列{bn}的最大項(xiàng).
【答案】
(1)解:已知式可化為 .
則當(dāng)n≥2時(shí), ﹣ = ﹣ ,
﹣ = ﹣ ,
…
﹣ =1﹣ ,
以上各式相加: ﹣ =1﹣ ,
整理得:an=2n﹣1,
當(dāng)n=1時(shí),顯然成立,
∴數(shù)列{an}的通項(xiàng)公式an=2n﹣1;(n∈N+)
(2)解:由 ,則bn=n×( )n,n∈N+,
設(shè)g(x)=x( )x,x>0,求導(dǎo)g′(x)=( )x+x( )xln( ),
令g′(x)=0,解得:x=﹣ ,8<﹣ <9,
由g(x)在(0,﹣ )單調(diào)遞增,在(﹣ ,+∞)單調(diào)遞減,
且 ,
∴數(shù)列{bn}的單調(diào)性得最大項(xiàng)為
【解析】(1)由 .采用累加法即可求得數(shù)列{an}的通項(xiàng)公式;(2)由(1)可知bn=n×( )n , n∈N+ , 根據(jù)導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系,即可求得數(shù)列{bn}的最大項(xiàng).
【考點(diǎn)精析】掌握數(shù)列的通項(xiàng)公式是解答本題的根本,需要知道如果數(shù)列an的第n項(xiàng)與n之間的關(guān)系可以用一個(gè)公式表示,那么這個(gè)公式就叫這個(gè)數(shù)列的通項(xiàng)公式.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={a1 , a2 , …,am}.若集合A1∪A2∪A3∪…∪An=A,則稱A1 , A2 , A3 , …,An為集合A的一種拆分,所有拆分的個(gè)數(shù)記為f(n,m).
(1)求f(2,1),f(2,2),f(3,2)的值;
(2)求f(n,2)(n≥2,n∈N*)關(guān)于n的表達(dá)式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校從參加高三模擬考試的學(xué)生中隨機(jī)抽取60名學(xué)生,將其數(shù)學(xué)成績(均為整數(shù))分成六組[90,100),[100,110),…,[140,150]后得到如下部分頻率分布直方圖,觀察圖形的信息,回答下列問題:
(1)求分?jǐn)?shù)在[120,130)內(nèi)的頻率;
(2)若在同一組數(shù)據(jù)中,將該組區(qū)間的中點(diǎn)值(如:組區(qū)間[100,110)的中點(diǎn)值為=105)作為這組數(shù)據(jù)的平均分,據(jù)此,估計(jì)本次考試的平均分;
(3)用分層抽樣的方法在分?jǐn)?shù)段為[110,130)的學(xué)生中抽取一個(gè)容量為6的樣本,將該樣本看成一個(gè)總體,從中任取2人,求至多有1人在分?jǐn)?shù)段[120,130)內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國古代數(shù)學(xué)名著《九章算術(shù)》中的更相減損法的思路與圖相似.執(zhí)行該程序框圖,若輸入的a,b分別為14,18,則輸出的a=( )
A.2
B.4
C.6
D.8
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下表提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量x(噸)與相應(yīng)的生產(chǎn)能耗y(噸標(biāo)準(zhǔn)煤)的幾組對(duì)照數(shù)據(jù):
(1)請(qǐng)畫出上表數(shù)據(jù)的散點(diǎn)圖;
(2)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程;
(3)已知該廠技改前100噸甲產(chǎn)品的生產(chǎn)能耗為90噸標(biāo)準(zhǔn)煤.試根據(jù)(2)求出的線性回歸方程,預(yù)測技改后生產(chǎn)100噸甲產(chǎn)品比技改前少消耗多少噸標(biāo)準(zhǔn)煤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=x(ex﹣1)﹣ax2(e=2.71828…是自然對(duì)數(shù)的底數(shù)).
(1)若 ,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若f(x)在(﹣1,0)內(nèi)無極值,求a的取值范圍;
(3)設(shè)n∈N* , x>0,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,已知點(diǎn)P( ,1),直線l的參數(shù)方程為(t為參數(shù))若以O(shè)為極點(diǎn),以O(shè)x為極軸,選擇相同的單位長度建立極坐標(biāo)系,則曲線C的極坐標(biāo)方程為ρ= cos(θ- )
(Ⅰ)求直線l的普通方程和曲線C的直角坐標(biāo)方程;
(Ⅱ)設(shè)直線l與曲線C相交于A,B兩點(diǎn),求點(diǎn)P到A,B兩點(diǎn)的距離之積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若按右側(cè)算法流程圖運(yùn)行后,輸出的結(jié)果是 ,則輸入的N的值可以等于( )
A.4
B.5
C.6
D.7
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com