精英家教網 > 高中數學 > 題目詳情

【題目】如圖,三棱錐中,底面ABC,M BC的中點,若底面ABC是邊長為2的正三角形,且PB與底面ABC所成的角為. 求:

(1)三棱錐的體積;

(2)異面直線PMAC所成角的大小. (結果用反三角函數值表示)

【答案】12;2

【解析】

試題(1)欲求三棱錐P-ABC的體積,只需求出底面積和高即可,因為底面ABC是邊長為2的正三角形,所以底面積可用來計算,其中a是正三角形的邊長,又因為PA⊥底面ABC,所以三棱錐的高就是PA長,再代入三棱錐的體積公式即可.(2)欲求異面直線所成角,只需平移兩條異面直線中的一條,是它們成為相交直線即可,由MBC中點,可借助三角形的中位線平行于第三邊的性質,做出的中位線,就可平移BC,把異面直線所成角轉化為平面角,再放入中,求出角即可.

試題解析:(1)因為底面,與底面所成的角為

所以, 因為,所以

2)連接,取的中點,記為,連接,則

所以為異面直線所成的角

計算可得:,,

異面直線所成的角為

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數

討論函數的單調性;

若關于x的方程有唯一解,且,求n的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在某次水下考古活動中,需要潛水員潛入水深為30米的水底進行作業(yè).其用氧量包含3個方面:①下潛時,平均速度為(米/單位時間),單位時間內用氧量為為正常數);②在水底作業(yè)需5個單位時間,每個單位時間用氧量為0.4;③返回水面時,平均速度為(米/單位時間), 單位時間用氧量為0.2.記該潛水員在此次考古活動中,總用氧量為.

1)將表示為的函數;

2)設0<≤5,試確定下潛速度,使總的用氧量最少.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】56日返校體檢中,學號為)的五位同學的體重增加量是集合中的元素,并滿足,則這五位同學的體重增加量所有可能的情況有________

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】觀察下列等式:

按此規(guī)律,第個等式可為__________

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】過拋物線y2=8x的焦點,作傾斜角為45°的直線,則被拋物線截得的弦長為(  )

A. 8 B. 16 C. 32 D. 64

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】圖是一幾何體的平面展開圖,其中四邊形ABCD為正方形,E,F,G,H分別為,的中點,在此幾何體中,給出下面五個結論:①平面平面ABCD;②平面BDG;③平面PBC;④平面BDG;⑤平面BDG.

其中正確結論的序號是________.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若函數為定義域上單調函數,且存在區(qū)間(其中),使得當時,的值域恰為,則稱函數上的正函數,區(qū)間叫做等域區(qū)間.如果函數上的正函數,則實數的取值范圍為 .

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,圓

(Ⅰ)若圓C與x軸相切,求圓C的方程;

(Ⅱ)已知,圓與x軸相交于兩點(點在點的左側).過點任作一條直線與圓相交于兩點A,B.問:是否存在實數a,使得=?若存在,求出實數a的值,若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案