已知圓C的參數(shù)方程為數(shù)學(xué)公式,若P是圓C與x軸正半軸的交點(diǎn),以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,設(shè)過點(diǎn)P的圓C的切線為l,求直線l的極坐標(biāo)方程.

解:由題設(shè)知,圓心 2分
∠CPO=60°,故過P點(diǎn)的切線的傾斜角為30° 4分
設(shè)M(ρ,θ) 是過P點(diǎn)的圓C的切線上的任一點(diǎn),則在△PMO中,∠MOP=θ,∠OMP=30°-θ,∠OPM=150°
由正弦定理得,∴ 8分
∴ρcos(θ+60°)=1(或ρsin(30°-θ)=1),即為所求切線的極坐標(biāo)方程.10分
分析:先求圓C的圓心坐標(biāo)及點(diǎn)P的坐標(biāo),利用以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,設(shè)過點(diǎn)P的圓C的切線為l,借助于正弦定理可求切線的極坐標(biāo)方程
點(diǎn)評(píng):本題以圓的參數(shù)方程為載體,考查直線的極坐標(biāo)方程,關(guān)鍵是利用正弦定理求解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C的參數(shù)方程為
x=
3
+2cosθ
y=2sinθ
(θ為參數(shù)),若P是圓C與y軸正半軸的交點(diǎn),以圓心C為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,求過點(diǎn)P的圓C的切線的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(坐標(biāo)系與參數(shù)方程選講選做題)已知圓C的參數(shù)方程為
x=cosθ
y=sinθ+2
(θ為參數(shù)),以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρsinθ+ρcosθ=1,則直線l截圓C所得的弦長是
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C的參數(shù)方程為
x=cosφ
y=sinφ
(φ為參數(shù)),直線l的極坐標(biāo)方程為ρcos(θ+
π
4
)=1,則直線l與圓C的公共點(diǎn)的個(gè)數(shù)為
1
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選修4-4:坐標(biāo)系與參數(shù)方程:
已知圓C的參數(shù)方程為
x=2+2cosφ
y=2sinφ
 (φ為參數(shù));
(1)把圓C的參數(shù)方程化成直角坐標(biāo)系中的普通方程;
(2)以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,把(1)中的圓C的普通方程化成極坐標(biāo)方程;設(shè)圓C和極軸正半軸的交點(diǎn)為A,寫出過點(diǎn)A且垂直于極軸的直線的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C的參數(shù)方程為
x=cosα
y=1+sinα
(α為參數(shù)),以原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρsinθ=1,(ρ≥0,0≤θ<2π)則直線l與圓C的交點(diǎn)的極坐標(biāo)為
 

查看答案和解析>>

同步練習(xí)冊答案