已知離散型隨機變量X的分布列為
X 0 1 2
P 0.5 1-2q q2
則常數(shù)q=
1-
2
2
1-
2
2
分析:由分布列的性質可得 0.5+1-2q+q2=1,解得q的值.
解答:解:由分布列的性質可得 0.5+1-2q+q2=1,解得q=1+
2
2
(舍去),或 q=1-
2
2
,
故答案為 1-
2
2
點評:本題主要考查離散型的分布列的性質,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知離散型隨機變量X的概率分布列為
X 1 3 5
P 0.5 m 0.2
則其方差D(X)等于( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知離散型隨機變量X服從二項分布X~B(n,p)且E(X)=3,D(X)=2,則n與p的值分別為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•廣東)已知離散型隨機變量X的分布列為
X 1 2 3
P
3
5
3
10
1
10
則X的數(shù)學期望E(X)=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知離散型隨機變量x的分布列如右表.若Eξ=0,Dξ=1,則符合條件的一組數(shù)(a,b,c)=
 

查看答案和解析>>

同步練習冊答案