袋中有大小相同的兩個(gè)球,編號(hào)分別為1和2,從袋中每次取出一個(gè)球,若取到球的編號(hào)為偶數(shù),則把該球放回袋中且編號(hào)加1并繼續(xù)取球,若取到球的編號(hào)為奇數(shù),則取球停止,用ξ表示所有被取球的編號(hào)之和.
(1)求ξ的概率分布;
(2)求ξ的數(shù)學(xué)期望和方差.
考點(diǎn):離散型隨機(jī)變量及其分布列,離散型隨機(jī)變量的期望與方差
專題:概率與統(tǒng)計(jì)
分析:(1)ξ可取1、3、5,分別求出相應(yīng)的概率,由此能求出ξ的概率分布.
(2)由ξ的概率分布能求出ξ的數(shù)學(xué)期望和方差.
解答: (第(1)小題(8分),第(2)小題4分)
解:(1)ξ可取1、3、5,…(1分)
ξ=1時(shí),第一次摸到1號(hào)球,P(ξ=1)=
1
2
.…(2分)
ξ=3時(shí),第一次摸到2號(hào)球,第二次摸到1號(hào)球,
P(ξ=3)=
1
2
×
1
2
=
1
4
,…(4分)
ξ=5時(shí),第一次摸到2號(hào)球,第二次摸到3號(hào)球,
P(ξ=5)=
1
2
×
1
2
=
1
4
,…(6分)
∴ξ的概率分布為:
ξ135
P
1
2
1
4
1
4
…(8分)
(2)由(1)得Eξ=1×
1
2
+3×
1
4
+5×
1
4
=
5
2
,…(10分)
Eξ2=1×
1
2
+9×
1
4
+25×
1
4
=9
,
Dξ=Eξ2-(Eξ)2=9-(
5
2
)2=
11
4
.…(12分)
點(diǎn)評(píng):本題考查離散型隨機(jī)變量的分布列、數(shù)學(xué)期望和方差的求法,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在長(zhǎng)方體ABCD-A1B1C1D1中,AD=AA1=1,AB=2,點(diǎn)E是AB上的點(diǎn),若直線D1E與EC垂直,
(Ⅰ)求線段AE的長(zhǎng);
(Ⅱ)求二面角D1-EC-D的大;
(Ⅲ)求D點(diǎn)到平面CD1E的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,某市擬在長(zhǎng)為4km的道路OP的一側(cè)修建一條運(yùn)動(dòng)賽道,賽道的前一部分為曲線段OSM,該曲線段為函數(shù)y=Asinωx(A>0,ω>0),X∈[0,2]的圖象,且圖象的最高點(diǎn)為S(
3
2
,
3
);賽道的后一部分為折線段MNP,為保證參賽運(yùn)動(dòng)員的安全,限定∠MNP=120°.
(Ⅰ) 求A,ω的值和M,P兩點(diǎn)間的距離;
(Ⅱ) 應(yīng)如何設(shè)計(jì),才能使折線段賽道MNP最長(zhǎng)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}中,a1=2,對(duì)于任意n∈N*,都有an+1=an+4,Sn是{an}的前n項(xiàng)和,則
lim
n→∞
nan
Sn+1
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若如圖的程序框圖輸出的S是126,則條件①可為(  )
A、n≤5B、n≤6
C、n≤7D、n≤8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若正四梭錐P-ABCD的底面邊長(zhǎng)及高均為2,剛此四棱錐內(nèi)切球的表面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=ln(x+1)-
2
x
的零點(diǎn)所在的區(qū)間是( 。
A、(
1
2
,1)
B、(e-1,2)
C、(1,e-1)
D、(2,e)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

長(zhǎng)方體ABCD-A1B1C1D1的各頂點(diǎn)都在以O(shè)為球心的球面上,且AB=AD=1,AA1=
2
,則A、B兩點(diǎn)的球面距離為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}中,a1=1,an+1=1-
4
an+3
,求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

同步練習(xí)冊(cè)答案