橢圓的一個焦點坐標為,則其離心率等于              (  )
A.2B.C.D.
D

試題分析:,其表示一個焦點坐標為的橢圓,
所以, ,故選.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知左焦點為的橢圓過點.過點分別作斜率為的橢圓的動弦,設分別為線段的中點.
(1)求橢圓的標準方程;
(2)若為線段的中點,求
(3)若,求證直線恒過定點,并求出定點坐標.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設點A(,0),B(,0),直線AM、BM相交于點M,且它們的斜率之積為.
(Ⅰ)求動點M的軌跡C的方程;
(Ⅱ)若直線過點F(1,0)且繞F旋轉,與圓相交于P、Q兩點,與軌跡C相交于R、S兩點,若|PQ|求△的面積的最大值和最小值(F′為軌跡C的左焦點).

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的離心率為,以原點為圓心,橢圓的短半軸為半徑的圓與直線相切,直線與橢圓C相交于A、B兩點.
(Ⅰ)求橢圓C的方程;
(Ⅱ)求的取值范圍;

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知分別是橢圓的左、右頂點,點在橢圓上,且直線與直線的斜率之積為
(Ⅰ)求橢圓的方程;
(Ⅱ)如圖,已知是橢圓上不同于頂點的兩點,直線交于點,直線交于點.① 求證:;② 若弦過橢圓的右焦點,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知橢圓C:+y2=1的兩焦點為,點滿足,則||+ç|的取值范圍為____   ___.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

是2和8的等比中項,則圓錐曲線的離心率是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,已知過橢圓的左頂點作直線軸于點,交橢圓于點,若是等腰三角形,且,則橢圓的離心率為         .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在平面直角坐標系中,已知橢圓的中心在原點,焦點在軸上,短軸長為,離心率為.
(I)求橢圓的方程;
(II) 為橢圓上滿足的面積為的任意兩點,為線段的中點,射線交橢圓與點,設,求實數(shù)的值.

查看答案和解析>>

同步練習冊答案