精英家教網 > 高中數學 > 題目詳情

已知函數數學公式,求
(1)函數y的最大值、最小值及最小正周期;
(2)函數y的單調遞增區(qū)間.

解:(1)根據正弦函數的性質可知,
∴-2≤y≤2
∴函數的最大值為2,最小值為-2,
T==4π
(2)令,k∈Z
∴4kπ-π≤x≤4kπ+π,k∈Z
∴函數的單調遞增區(qū)間為[4kπ-π,4kπ+π](k∈Z)
分析:(1)根據正弦函數的性質可知,,從而可求函數的最值,由周期公式可求T
(2)令,k∈Z可求函數的單調遞增區(qū)間
點評:本題主要考查了正弦函數的單調區(qū)間、最值及周期的求解,屬于基礎試題
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=loga
2m-1-mxx+1
(a>0,a≠1)
是奇函數,定義域為區(qū)間D(使表達式有意義的實數x 的集合).
(1)求實數m的值,并寫出區(qū)間D;
(2)若底數a>1,試判斷函數y=f(x)在定義域D內的單調性,并說明理由;
(3)當x∈A=[a,b)(A⊆D,a是底數)時,函數值組成的集合為[1,+∞),求實數a、b的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=loga
2m-1-mxx+1
(a>0,a≠1)
是奇函數,定義域為區(qū)間D(使表達式有意義的實數x 的集合).
(1)求實數m的值,并寫出區(qū)間D;
(2)若底數a滿足0<a<1,試判斷函數y=f(x)在定義域D內的單調性,并說明理由;
(3)當x∈A=[a,b)(A⊆D,a是底數)時,函數值組成的集合為[1,+∞),求實數a、b的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=a-
1|2x-b|
是偶函數,a為實常數.
(1)求b的值;
(2)當a=1時,是否存在m,n(n>m>0)使得函數y=f(x)在區(qū)間[m,n]上的函數值組成的集合也是[m,n],若存在,求出m,n的值,否則,說明理由;
(3)若在函數定義域內總存在區(qū)間[m,n](m<n),使得y=f(x)在區(qū)間[m,n]上的函數值組成的集合也是[m,n],求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=a-
1|2x-b|
是偶函數,a為實常數.
(1)求b的值;
(2)當a=1時,是否存在m,n(n>m>o)使得函數y=f(x)在區(qū)間[m,n]上的函數值組成的集合也是[m,n],若存在,求出m,n的值,否則,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

給出如下命題:
命題p:已知函數y=f(x)=
1-x3
,則|f(a)|<2(其中f(a)表示函數y=f(x)在x=a時的函數值);
命題q:集合A={x|x2+(a+2)x+1=0,x∈R},B={x|x>0},且A∩B=∅;
求實數a的取值范圍,使命題p,q中有且只有一個為真命題.

查看答案和解析>>

同步練習冊答案