15.已知數(shù)列{an}的前n項(xiàng)和為Sn,向量$\overrightarrow{a}$=(Sn,1),$\overrightarrow$=(2n-1,$\frac{1}{2}$),滿足條件$\overrightarrow{a}$∥$\overrightarrow$,
(1)求數(shù)列{an}的通項(xiàng)公式,
(2)設(shè)函數(shù)f(x)=($\frac{1}{2}$)x,數(shù)列{bn}滿足條件b1=1,f(bn+1)=$\frac{1}{{f(-{b_n}-1)}}$.
①求數(shù)列{bn}的通項(xiàng)公式,
②設(shè)cn=$\frac{_{n}}{{a}_{n}}$,求數(shù)列{cn}的前n項(xiàng)和Tn

分析 (1)運(yùn)用向量共線的坐標(biāo)表示,可得Sn=2n+1-2,再由當(dāng)n>1時(shí),an=Sn-Sn-1,n=1時(shí),a1=S1,即可得到所求通項(xiàng)公式;
(2)①運(yùn)用指數(shù)的運(yùn)算性質(zhì)和等差數(shù)列的定義,即可得到所求通項(xiàng)公式;
②求得Cn=$\frac{_{n}}{{a}_{n}}$=$\frac{n}{{2}^{n}}$,運(yùn)用數(shù)列的求和方法:錯(cuò)位相減法,結(jié)合等比數(shù)列的求和公式,化簡整理即可得到所求和.

解答 解:(1)由向量$\overrightarrow{a}$=(Sn,1),$\overrightarrow$=(2n-1,$\frac{1}{2}$),$\overrightarrow{a}$∥$\overrightarrow$,
可得$\frac{1}{2}$Sn=2n-1,即Sn=2n+1-2,
當(dāng)n>1時(shí),an=Sn-Sn-1=(2n+1-2)-(2n-2)=2n,
當(dāng)n=1時(shí),a1=S1=2,滿足上式.
則有數(shù)列{an}的通項(xiàng)公式為an=2n,n∈N*;
(2)①f(x)=($\frac{1}{2}$)x,b1=1,f(bn+1)=$\frac{1}{{f(-{b_n}-1)}}$.
可得($\frac{1}{2}$)${\;}^{_{n+1}}$=$\frac{1}{(\frac{1}{2})^{-1-_{n}}}$=($\frac{1}{2}$)${\;}^{1+_{n}}$,
即有bn+1=bn+1,可得{bn}為首項(xiàng)和公差均為1的等差數(shù)列,
即有bn=n;
②Cn=$\frac{_{n}}{{a}_{n}}$=$\frac{n}{{2}^{n}}$,前n項(xiàng)和Tn=1•$\frac{1}{2}$+2•($\frac{1}{2}$)2+…+(n-1)•($\frac{1}{2}$)n-1+n•($\frac{1}{2}$)n,
$\frac{1}{2}$Tn=1•($\frac{1}{2}$)2+2•($\frac{1}{2}$)3+…+(n-1)•($\frac{1}{2}$)n+n•($\frac{1}{2}$)n+1,
相減可得,$\frac{1}{2}$Tn=$\frac{1}{2}$+($\frac{1}{2}$)2+…+($\frac{1}{2}$)n-1+($\frac{1}{2}$)n-n•($\frac{1}{2}$)n+1
=$\frac{\frac{1}{2}(1-\frac{1}{{2}^{n}})}{1-\frac{1}{2}}$-n•($\frac{1}{2}$)n+1,
化簡可得,前n項(xiàng)和Tn=2-$\frac{n+2}{{2}^{n}}$.

點(diǎn)評(píng) 本題考查等差數(shù)列的通項(xiàng)的求法,注意運(yùn)用數(shù)列的通項(xiàng)與求和的關(guān)系,考查數(shù)列的求和方法:錯(cuò)位相減法,同時(shí)考查向量共線的坐標(biāo)表示和等比數(shù)列的求和公式的運(yùn)用,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖正四棱住ABCD-A1B1C1D1中,點(diǎn)E是A1A上的點(diǎn),M是AC、BD的交點(diǎn).
(1)若A1C∥平面EBD,求證:點(diǎn)E是AA1中點(diǎn);
(2)若AB=1,△EBD的面積S=$\sqrt{2}$,點(diǎn)F在CC1上,且FM⊥EM,求三棱錐體積VF-EBD的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知|$\overrightarrow{a}$|=8,|$\overrightarrow$|=6,則<$\overrightarrow{a}$,$\overrightarrow$>=150°,則$\overrightarrow{a}$$•\overrightarrow$=( 。
A.-24B.24C.-24$\sqrt{3}$D.24$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,直三棱柱ABC-A1B1C1的底面為正三角形,E、F分別是BC、CC1的中點(diǎn).
(1)證明:平面AEF⊥平面B1BCC1;
(2)若D為AB中點(diǎn),∠CA1D=45°且AB=2,求三棱錐F-AEC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,矩形CDEF和梯形ABCD互相垂直,∠BAD=∠ADC=90°,AB=AD=$\frac{1}{2}$CD,BE⊥DF.
(1)若M位EA的中點(diǎn),求證:AC∥平面MDF;
(2)若AB=2,求四棱錐E-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若Sn為數(shù)列{an}的前n項(xiàng)和,且a1=1,Sn=$\frac{1}{2}$anan+1,an≠0,若數(shù)列{$\frac{1}{2{S}_{n}}$}的前n項(xiàng)和Tn=$\frac{2016}{2017}$,則n的值為2016.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知公差大于零的等差數(shù)列{an},各項(xiàng)均為正數(shù)的等比數(shù)列{bn},滿足a1=1,b1=2,a4=b2,a8=b3
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)令${c_n}=\frac{a_n}{b_n}$,數(shù)列{cn}的前n項(xiàng)和為Sn,求證:Sn<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.[A]已知數(shù)列{an}滿足a4=20,an+1=2an-n+1(n∈N+).
(1)計(jì)算a1,a2,a3,根據(jù)計(jì)算結(jié)果,猜想an的表達(dá)式(不必證明);
(2)若數(shù)列{an}的前n項(xiàng)和Sn>2016,求n的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=x|x-a|
(1)判斷f(x)的奇偶性,并證明;
(2)求實(shí)數(shù)a的取值范圍,使函數(shù)g(x)=f(x)+2x+1在R上恒為增函數(shù);
(3)求函數(shù)f(x)在[-1,1]的最小值g(a).

查看答案和解析>>

同步練習(xí)冊(cè)答案