【題目】函數(shù)f(x)是定義在區(qū)間(0,+∞)上的可導(dǎo)函數(shù),其導(dǎo)函數(shù)為f′(x),且滿足xf′(x)+2f(x)>0,則不等式 的解集為( )
A.{x>﹣2011}
B.{x|x<﹣2011}
C.{x|﹣2011<x<0}
D.{x|﹣2016<x<﹣2011}
【答案】D
【解析】解:構(gòu)造函數(shù)g(x)=x2f(x),g′(x)=x(2f(x)+xf′(x)); 當(dāng)x>0時(shí),
∵2f(x)+xf′(x)>0,
∴g′(x)>0,
∴g(x)在(0,+∞)上單調(diào)遞增,
∵不等式 ,
∴x+2016>0時(shí),即x>﹣2016時(shí),
∴(x+2016)2f(x+2016)<52f(5),
∴g(x+2016)<g(5),
∴x+2016<5,
∴﹣2016<x<﹣2011,
故選:D.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性的相關(guān)知識,掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=|2x+3|﹣|2x﹣a|,a∈R.
(1)若不等式f(x)≤﹣5的解集非空,求實(shí)數(shù)a的取值范圍;
(2)若函數(shù)y=f(x)的圖象關(guān)于點(diǎn)(﹣ ,0)對稱,求實(shí)數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司有A,B,C,D,E五輛汽車,其中A、B兩輛汽車的車牌尾號均為1,C、D兩輛汽車的車牌尾號均為2,E車的車牌尾號為6,已知在非限行日,每輛車可能出車或不出車,A、B、E三輛汽車每天出車的概率均為 ,C、D兩輛汽車每天出車的概率均為 ,且五輛汽車是否出車相互獨(dú)立,該公司所在地區(qū)汽車限行規(guī)定如下:
車牌尾號 | 0和5 | 1和6 | 2和7 | 3和8 | 4和9 |
限行日 | 星期一 | 星期二 | 星期三 | 星期四 | 星期五 |
(1)求該公司在星期一至少有2輛汽車出車的概率;
(2)設(shè)X表示該公司在星期二和星期三兩天出車的車輛數(shù)之和,求X的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知兩個(gè)不相等的非零向量 , ,兩組向量均由 , , , 和 , , , 均由2個(gè) 和2個(gè) 排列而成,記S= + + + ,Smin表示S所有可能取值中的最小值,則下列命題中正確的個(gè)數(shù)為( )
①S有3個(gè)不同的值;
②若 ⊥ ,則Smin與| |無關(guān);
③若 ∥ ,則Smin與| |無關(guān);
④若| |=2| ,Smin=4 ,則 與 的夾角為 .
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 且Sn=2an﹣2(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足 = ﹣ ﹣…+(﹣1)n+1 ,求數(shù)列{bn}的通項(xiàng)公式;
(3)在(2)的條件下,設(shè)cn=2n+λbn , 問是否存在實(shí)數(shù)λ使得數(shù)列{cn}(n∈N*)是單調(diào)遞增數(shù)列?若存在,求出λ的取值范圍;若不存在,請說明你的理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,設(shè)橢圓C1: + =1(a>b>0),長軸的右端點(diǎn)與拋物線C2:y2=8x的焦點(diǎn)F重合,且橢圓C1的離心率是 .
(1)求橢圓C1的標(biāo)準(zhǔn)方程;
(2)過F作直線l交拋物線C2于A,B兩點(diǎn),過F且與直線l垂直的直線交橢圓C1于另一點(diǎn)C,求△ABC面積的最小值,以及取到最小值時(shí)直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)= ﹣x,若不等式f(x)≤0在[﹣2,+∞)上有解,則實(shí)數(shù)a的最小值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(選做題)[選修4-4:坐標(biāo)系與參數(shù)方程]
已知曲線C的參數(shù)方程為 (θ為參數(shù)).以原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)方程.
(1)求曲線C的極坐標(biāo)方程;
(2)若直線l:θ=α(α∈[0,π),ρ∈R)與曲線C相交于A,B兩點(diǎn),設(shè)線段AB的中點(diǎn)為M,求|OM|的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在△ABC中,角A,B,C所對的邊分別為a,b,c,且a<b<c,C=2A.
(1)若c= a,求角A;
(2)是否存在△ABC恰好使a,b,c是三個(gè)連續(xù)的自然數(shù)?若存在,求△ABC的周長;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com