分析 設(shè)出P(x0,y0),得${x}_{0}•{y}_{0}=\frac{1}{4}$.再由圓系方程求出過兩切點A,B的直線方程,分別求出M點,N點的坐標(biāo),代入三角形面積公式得答案.
解答 解:設(shè)P(x0,y0),則${x}_{0}•{y}_{0}=\frac{1}{4}$.
以O(shè)P為直徑的圓的方程為$(x-\frac{{x}_{0}}{2})^{2}+(y-\frac{{y}_{0}}{2})^{2}=\frac{{{x}_{0}}^{2}+{{y}_{0}}^{2}}{4}$,
整理得:x2+y2-x0x-y0y=0,
又圓x2+y2=1,
兩式作差可得x0x+y0y=1,即過A、B兩切點的直線方程.
取y=0,得$x=\frac{1}{{x}_{0}}$,取x=0,得y=$\frac{1}{{y}_{0}}$.
∴${S}_{△OMN}=\frac{1}{2}|\frac{1}{{x}_{0}}||\frac{1}{{y}_{0}}|=\frac{1}{2}×\frac{1}{4}=\frac{1}{8}$.
故答案為:$\frac{1}{8}$.
點評 本題考查直線與圓位置關(guān)系的應(yīng)用,考查數(shù)學(xué)轉(zhuǎn)化思想方法和數(shù)形結(jié)合的解題思想方法,求出AB方程是關(guān)鍵,是中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 函數(shù)$f(x)=sin\sqrt{x}$不是周期函數(shù). | |
B. | 函數(shù)$f(x)=sin\frac{1}{x}$不是周期函數(shù). | |
C. | 函數(shù)f(x)=sin|x|不是周期函數(shù). | |
D. | 函數(shù)f(x)=|sinx|+|cosx|的最小正周期為π. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{4}$ | B. | $\frac{3}{5}$ | C. | $\frac{1}{2}$ | D. | $\frac{5}{9}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 2 | C. | 4 | D. | 5 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com