【題目】如圖,在三棱柱ABC﹣A1B1C1中,側(cè)棱AA1⊥底面ABC,AB=AC=2AA1 , ∠BAC=120°,D,D1分別是線段BC,B1C1的中點,P是線段AD的中點.
(1)在平面ABC內(nèi),試做出過點P與平面A1BC平行的直線l,說明理由,并證明直線l⊥平面ADD1A1;
(2)設(1)中的直線l交AB于點M,交AC于點N,求二面角A﹣A1M﹣N的余弦值.
【答案】
(1)解:在平面ABC內(nèi),過點P作直線l∥BC
∵直線l平面A1BC,BC平面A1BC,
∴直線l∥平面A1BC,
∵△ABC中,AB=AC,D是BC的中點,
∴AD⊥BC,結(jié)合l∥BC得AD⊥l
∵AA1⊥平面ABC,l平面ABC,∴AA1⊥l
∵AD、AA1是平面ADD1A1內(nèi)的相交直線
∴直線l⊥平面ADD1A1;
(2)解:連接A1P,過點A作AE⊥A1P于E,過E點作EF⊥A1M于F,連接AF
由(I)知MN⊥平面A1AE,結(jié)合MN平面A1MN得平面A1MN⊥平面A1AE,
∵平面A1MN∩平面A1AE=A1P,AE⊥A1P,∴AE⊥平面A1MN,
∵EF⊥A1M,EF是AF在平面A1MN內(nèi)的射影,
∴AF⊥A1M,可得∠AFE就是二面角A﹣A1M﹣N的平面角
設AA1=1,則由AB=AC=2AA1,∠BAC=120°,可得∠BAD=60°,AB=2且AD=1
又∵P為AD的中點,∴M是AB的中點,得AP= ,AM=1
Rt△A1AP中,A1P= = ;Rt△A1AM中,A1M=
∴AE= = ,AF= =
∴Rt△AEF中,sin∠AFE= = ,可得cos∠AFE= =
即二面角A﹣A1M﹣N的余弦值等于 .
【解析】(1)在平面ABC內(nèi)過點P作直線l∥BC,根據(jù)線面平行的判定定理得直線l∥平面A1BC.由等腰三角形“三線合一”得到AD⊥BC,從而得到AD⊥l,結(jié)合AA1⊥l且AD、AA1是平面ADD1A1內(nèi)的相交直線,證出直線l⊥平面ADD1A1;(2)連接A1P,過點A作AE⊥A1P于E,過E點作EF⊥A1M于F,連接AF.根據(jù)面面垂直判定定理,證出平面A1MN⊥平面A1AE,從而得到AE⊥平面A1MN,結(jié)合EF⊥A1M,由三垂線定理得AF⊥A1M,可得∠AFE就是二面角A﹣A1M﹣N的平面角.設AA1=1,分別在Rt△A1AP中和△AEF中算出AE、AF的長,在Rt△AEF中,根據(jù)三角函數(shù)的定義算出sin∠AFE的值,結(jié)合同角三角函數(shù)的平方關(guān)系算出cos∠AFE的值,從而得出二面角A﹣A1M﹣N的余弦值.
【考點精析】通過靈活運用直線與平面垂直的判定,掌握一條直線與一個平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直;注意點:a)定理中的“兩條相交直線”這一條件不可忽視;b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉(zhuǎn)化的數(shù)學思想即可以解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】在空間中,過點A作平面π的垂線,垂足為B,記B=fπ(A).設α,β是兩個不同的平面,對空間任意一點P,Q1=fβ[fα(P)],Q2=fα[fβ(P)],恒有PQ1=PQ2 , 則( )
A.平面α與平面β垂直
B.平面α與平面β所成的(銳)二面角為45°
C.平面α與平面β平行
D.平面α與平面β所成的(銳)二面角為60°
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司制定了一個激勵銷售人員的獎勵方案:當銷售利潤不超過10萬元時,按銷售利潤的16%進行獎勵;當銷售利潤超過10萬元時,若超出A萬元,則超出部分按2log5(A+1)進行獎勵.記獎金y(單位:萬元),銷售利潤x(單位:萬元)
(1)寫出該公司激勵銷售人員的獎勵方案的函數(shù)模型;
(2)如果業(yè)務員老張獲得5.6萬元的獎金,那么他的銷售利潤是多少萬元.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為推行“新課堂”教學法, 某化學老師分別用傳統(tǒng)教學和“新課堂”兩種不同的教學方式, 在甲、乙兩個平行班進行教學實驗, 為了解教學效果, 期中考試后, 分別從兩個班級中各隨機抽取20名學生的成績進行統(tǒng)計, 作出的莖葉圖如下圖, 記成績不低于70分者為“成績優(yōu)良”.
(1) 分別計算甲、乙兩班20個樣本中, 化學成績前十的平均分, 并據(jù)此判斷哪種教學方式的教學效果更佳;
甲班 | 乙班 | 總計 | |
成績優(yōu)良 | |||
成績不優(yōu)良 | |||
總 計 |
(2)由以上統(tǒng)計數(shù)據(jù)填寫下面2×2列聯(lián)表,是否有95%的把握認為“成績優(yōu)良與教學方式關(guān)”?
0.05 | 0.010 | |
3.841 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的中心在坐標原點,焦點在軸上,它的一個頂點恰好是拋物線的焦點,它的離心率是雙曲線的離心率的倒數(shù).
(Ⅰ)求橢圓的標準方程;
(Ⅱ)過橢圓的右焦點作直線交橢圓于、兩點,交軸于點,若,,求證:為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本題滿分15分)已知數(shù)列{an}的前n項和為Sn,且an是Sn與2的等差中項,數(shù)列{bn}中,b1=1,點P(bn,bn+1)在直線x-y+2=0上。
(1)求a1和a2的值;
(2)求數(shù)列{an},{bn}的通項an和bn;
(3)設cn=an·bn,求數(shù)列{cn}的前n項和Tn
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(2015秋隨州期末)甲命題:若隨機變量ξ~N(3,σ2),若P(ξ≤2)=0.3,則P(ξ≤4)=0.7.乙命題:隨機變量η﹣B(n,p),且Eη=300,Dη=200,則P=,則正確的是( )
A. 甲正確乙錯誤 B. 甲錯誤乙正確
C. 甲錯誤乙也錯誤 D. 甲正確乙也正確
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】據(jù)說偉大的阿基米德逝世后,敵軍將領(lǐng)馬塞拉斯給他建了一塊墓碑,在墓碑上刻了一個如圖所示的圖案,圖案中球的直徑、圓柱底面的直徑和圓柱的高相等,圓錐的頂點為圓柱上底面的圓心,圓錐的底面是圓柱的下底面.
(1)試計算出圖案中球與圓柱的體積比;
(2)假設球半徑.試計算出圖案中圓錐的體積和表面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com