已知數(shù)列{an}滿足a2=
1
3
,an=
1
3
(1-an-1),求數(shù)列{an}的通項(xiàng)公式.
考點(diǎn):數(shù)列遞推式
專題:點(diǎn)列、遞歸數(shù)列與數(shù)學(xué)歸納法
分析:由數(shù)列遞推式結(jié)合a2=
1
3
求得a1,再由數(shù)列遞推式構(gòu)造出等比數(shù)列{an-
1
4
},求出其通項(xiàng)公式,則數(shù)列{an}的通項(xiàng)公式可求.
解答: 解:由an=
1
3
(1-an-1),得an=-
1
3
an-1+
1
3
,
an-
1
4
=-
1
3
(an-1-
1
4
)

再由a2=
1
3
,an=
1
3
(1-an-1),得a1=0,
a1-
1
4
=-
1
4

∴數(shù)列{an-
1
4
}是以-
1
4
為首項(xiàng),以-
1
3
為公比的等比數(shù)列.
an-
1
4
=-
1
4
×(-
1
3
)n-1
,
an=
1
4
-
1
4
×(-
1
3
)n-1
點(diǎn)評(píng):本題考查了數(shù)列遞推式,考查了等比關(guān)系的確定,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某公司經(jīng)銷某種產(chǎn)品,每件產(chǎn)品的成本為6元,預(yù)計(jì)當(dāng)每件產(chǎn)品的售價(jià)為x元(9≤x≤11)時(shí),一年的銷售量為(12-x)2萬件.
(1)求公司一年的利潤y(萬元)與每件產(chǎn)品的售價(jià)x的函數(shù)關(guān)系;
(2)當(dāng)每件產(chǎn)品的售價(jià)為多少時(shí),公司的一年的利潤y最大,求出y最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,兩座建筑物AB,CD的底部都在同一個(gè)水平面上,且均與水平面垂直,它們的高度分別是9m和15m,從建筑物AB的頂部A看建筑物CD的張角∠CAD=45°.
(1)求BC的長度;
(2)在線段BC上取一點(diǎn)P(點(diǎn)P與點(diǎn)B,C不重合),從點(diǎn)P看這兩座建筑物的張角分別為∠APB=α,∠DPC=β,問點(diǎn)P在何處時(shí),tan(α+β)最?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=a3x+1-a-2x,(a>0,a≠1).
(Ⅰ)解關(guān)于a的不等式f(-1)>0;
(Ⅱ)當(dāng)a>1時(shí),求使f(x)>0的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

.已知f(x)=ax5-bx3+c(a>0).若f(x)在x=±1處有極值,且極大值為4,極小值為1,求a、b、c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

長為3a的線段的端點(diǎn)分別在x、y軸上滑動(dòng),M為AB的一個(gè)三等分點(diǎn),則M的軌跡方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}的前n項(xiàng)和為Sn,若an+1=-4Sn+1,a1=1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=nan,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin(x+θ)+cos(x+θ)的定義域?yàn)镽
(1)當(dāng)θ=
π
2
時(shí),求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)若θ∈(0,π),求當(dāng)θ為何值時(shí)f(x)為偶函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,△ABC中,AB=1,B=60°,sinC=
7
14

(Ⅰ)求邊AC,BC的長;
(Ⅱ)若點(diǎn)D為BC邊上的動(dòng)點(diǎn),且使得∠BAD為鈍角,求線段BD長度的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案