【題目】已知函數(shù).
(1)若,曲線(xiàn)在點(diǎn)處的切線(xiàn)與直線(xiàn)平行,求的值;
(2)若,且函數(shù)的值域?yàn)?/span>,求的最小值.
【答案】(1);(2)
【解析】
(1)對(duì)函數(shù)進(jìn)行求導(dǎo)得,再利用導(dǎo)數(shù)的幾何意義得,從而得到關(guān)于的方程,解方程即可得到答案;
(2)當(dāng)時(shí),,將函數(shù)可化為,則,從而將問(wèn)題轉(zhuǎn)化為有解,再構(gòu)造函數(shù),利用導(dǎo)數(shù)研究函數(shù)的值域,從而得到的取值范圍.
(1)當(dāng)時(shí),,
,
由,
得,
即,
解得或,
當(dāng)時(shí),,此時(shí)直線(xiàn)恰為切線(xiàn),故舍去,
所以.
(2)當(dāng)時(shí),,設(shè),
設(shè),則,
故函數(shù)可化為.
由,可得
的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為,
所以的最小值為,
此時(shí),函數(shù)的的值域?yàn)?/span>
問(wèn)題轉(zhuǎn)化為當(dāng)時(shí),有解,
即,得.
設(shè),則,
故的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為,
所以的最小值為,
故的最小值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】根據(jù)國(guó)家環(huán)保部新修訂的《 環(huán)境空氣質(zhì)量標(biāo)準(zhǔn)》規(guī)定:居民區(qū)的年平均濃度不得超過(guò)微克/立方米,的小時(shí)平均濃度不得超過(guò)微克/立方米.我市環(huán)保局隨機(jī)抽取了一居民區(qū)年天的小時(shí)平均濃度(單位:微克/立方米)的監(jiān)測(cè)數(shù)據(jù),數(shù)據(jù)統(tǒng)計(jì)如下表:
組別 | 濃度(微克/立方米) | 頻數(shù)(天) | 頻率 |
第一組 | |||
第二組 | |||
第三組 | |||
第四組 |
(1)這天的測(cè)量結(jié)果按上表中分組方法繪制成的樣本頻率分布直方圖如圖.
①求圖中的值;
②求樣本平均數(shù),并根據(jù)樣本估計(jì)總體的思想,從的年平均濃度考慮,判斷該居民區(qū)的環(huán)境質(zhì)量是否需要改善?并說(shuō)明理由;
(2)將頻率視為概率,對(duì)于年的某天,記這天中該居民區(qū)的小時(shí)平均濃度符合環(huán)境空氣質(zhì)量標(biāo)準(zhǔn)的天數(shù)為,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知四棱錐中,,.
(1)求證:平面平面;
(2)若點(diǎn)是線(xiàn)段上靠近的三等分點(diǎn),求直線(xiàn)與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是邊長(zhǎng)為2的菱形,∠DAB=60°,AD⊥PD,點(diǎn)F為棱PD的中點(diǎn).
(1)在棱BC上是否存在一點(diǎn)E,使得CF∥平面PAE,并說(shuō)明理由;
(2)若AC⊥PB,二面角D﹣FC﹣B的余弦值為時(shí),求直線(xiàn)AF與平面BCF所成的角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正方體,過(guò)對(duì)角線(xiàn)作平面交棱于點(diǎn),交棱于點(diǎn),下列正確的是( )
A.平面分正方體所得兩部分的體積相等;
B.四邊形一定是平行四邊形;
C.平面與平面不可能垂直;
D.四邊形的面積有最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)若函數(shù)在區(qū)間上存在兩個(gè)不同零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知0<m<2,動(dòng)點(diǎn)M到兩定點(diǎn)F1(﹣m,0),F2(m,0)的距離之和為4,設(shè)點(diǎn)M的軌跡為曲線(xiàn)C,若曲線(xiàn)C過(guò)點(diǎn).
(1)求m的值以及曲線(xiàn)C的方程;
(2)過(guò)定點(diǎn)且斜率不為零的直線(xiàn)l與曲線(xiàn)C交于A,B兩點(diǎn).證明:以AB為直徑的圓過(guò)曲線(xiàn)C的右頂點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】政府工作報(bào)告指出,2019年我國(guó)深入實(shí)施創(chuàng)新驅(qū)動(dòng)發(fā)展戰(zhàn)略,創(chuàng)新能力和效率進(jìn)一步提升;2020年要提升科技支撐能力,健全以企業(yè)為主體的產(chǎn)學(xué)研一體化創(chuàng)新機(jī)制,某企業(yè)為了提升行業(yè)核心競(jìng)爭(zhēng)力,逐漸加大了科技投入;該企業(yè)連續(xù)5年來(lái)的科技投入x(百萬(wàn)元)與收益y(百萬(wàn)元)的數(shù)據(jù)統(tǒng)計(jì)如下:
科技投入x | 1 | 2 | 3 | 4 | 5 |
收益y | 40 | 50 | 60 | 70 | 90 |
(1)請(qǐng)根據(jù)表中數(shù)據(jù),建立y關(guān)于x的線(xiàn)性回歸方程;
(2)按照(1)中模型,已知科技投入8百萬(wàn)元時(shí)收益為140百萬(wàn)元,求殘差(殘差真實(shí)值-預(yù)報(bào)值).
參考數(shù)據(jù):回歸直線(xiàn)方程,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
Ⅰ若函數(shù)的最大值為3,求實(shí)數(shù)的值;
Ⅱ若當(dāng)時(shí),恒成立,求實(shí)數(shù)的取值范圍;
Ⅲ若,是函數(shù)的兩個(gè)零點(diǎn),且,求證:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com