精英家教網 > 高中數學 > 題目詳情

(本題滿分14分)已知函數

 

(1)求的值;

 

(2)已知數列,求證數列是等差數列;

 

(3)已知,求數列的前n項和.

 

 

【答案】

解:(1)因為. --------------------2分

 

所以設S=…………(1)

 

S=. ………(2)        

 

(1)+(2)得:

 

=,     所以S=. ------------------------------5分

 

(2)由兩邊同減去1,得. -----------------7分

 

所以,

 

所以,是以2為公差以為首項的等差數列.10分

 

(3)因為.

 

因為,所以        ------------------------------12分

 

=         (3)

 

=           (4)

 

由(3)-(4)得

==

 

所以=              -----------------------------14分

 

【解析】略

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(本題滿分14分)已知向量 ,函數.   (Ⅰ)求的單調增區(qū)間;  (II)若在中,角所對的邊分別是,且滿足:,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

(本題滿分14分)已知,且以下命題都為真命題:

命題 實系數一元二次方程的兩根都是虛數;

命題 存在復數同時滿足.

求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源:2012-2013學年吉林省高三第一次月考文科數學試卷(解析版) 題型:解答題

(本題滿分14分)已知函數

(1)若,求x的值;

(2)若對于恒成立,求實數m的取值范圍.

 

查看答案和解析>>

科目:高中數學 來源:2010-2011學年廣東省惠州市高三第三次調研考試數學理卷 題型:解答題

(本題滿分14分)

已知橢圓的離心率為,過坐標原點且斜率為的直線相交于、,

⑴求、的值;

⑵若動圓與橢圓和直線都沒有公共點,試求的取值范圍.

 

查看答案和解析>>

科目:高中數學 來源:2010-2011學年廣東省惠州市高三第三次調研考試數學理卷 題型:解答題

((本題滿分14分)

已知梯形ABCD中,AD∥BC,∠ABC =∠BAD =,AB=BC=2AD=4,E、F分別是AB、CD上的點,EF∥BC,AE = x,G是BC的中點.沿EF將梯形ABCD翻折,使平面AEFD⊥平面EBCF (如圖).

(1)當x=2時,求證:BD⊥EG ;

(2)若以F、B、C、D為頂點的三棱錐的體積記為,

的最大值;

(3)當取得最大值時,求二面角D-BF-C的余弦值.

 

查看答案和解析>>

同步練習冊答案