求證:對于任意實數(shù)x1、x2、y1、y2,都有不等式成立.

答案:
解析:


提示:

從要證明的不等式形式,聯(lián)想到兩點間的距離公式,故建立坐標(biāo)系,采納解析法證明.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}的各項均為正數(shù),Sn為其前n項和,對于任意n∈N*,總有an,Sn,an2成等差數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)數(shù)列{bn}的前n項和為Tn,且bn=
lnnx
a
2
n
,求證:對任意實數(shù)x∈(1,e](e是常數(shù),e=2.71828…)和任意正整數(shù)n,總有Tn<2;
(3)正數(shù)數(shù)列{cn}中,an+1=(cnn+1(n∈N*),求數(shù)列{cn}中的最大項.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=ax2+bx+c(a,b,c均為實數(shù)),滿足a-b+c=0,對于任意實數(shù)x 都有f (x)-x≥0,并且當(dāng)x∈(0,2)時,有f (x)≤(
x+1
2
)2

(1)求f (1)的值;
(2)證明:ac≥
1
16
;
(3)當(dāng)x∈[-2,2]且a+c取得最小值時,函數(shù)F(x)=f (x)-mx (m為實數(shù))是單調(diào)的,求證:m≤-
1
2
或m≥
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
3
ax3+
1
2
bx2
+cx+d(a,b,c,d為常數(shù)且a≠0),g(x)=f′(x)(f′(x)為f(x)的導(dǎo)數(shù)).
(Ⅰ)若g(x)滿足:①g′(0)>0;②對于任意實數(shù)x,都有g(shù)(x)≥0.求
g(1)
g(0)
的最小值;
(Ⅱ)若a=1且對任意實數(shù)x∈(-∞,0)時有f′(x)>0;對于任意實數(shù)x∈(0,4)有f′(x)<0,求b的實數(shù)范圍;
(Ⅲ)若a>0,-4a<b<4a,b2-4ac>0,-(4a+c)<2b<4a+c,求證:函數(shù)g(x)的零點在區(qū)間(-2,2)內(nèi).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義域為R的偶函數(shù)f(x)滿足:對于任意實數(shù)x,都有f(1+x)=f(1-x),且當(dāng)0≤x≤1時,f(x)=3x+1+2x.
(1)求證:對于任意實數(shù)x,都有f(x+2)=f(x);
(2)當(dāng)x∈[1,3]時,求f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)y=f(x)為定義在區(qū)間I上的函數(shù),若對I上任意兩個實數(shù)x1,x2都有f(
x1+x2
2
)≤
1
2
[f(x1)+f(x2)]
成立,則f(x)稱為I上的凹函數(shù).
(1)判斷f(x)=
3
x
(x>0)
是否為凹函數(shù)?
(2)已知函數(shù)f2(x)=x|ax-3|(a≠0)為區(qū)間[3,6]上的凹函數(shù),請直接寫出實數(shù)a的取值范圍(不要求寫出解題過程);
(3)設(shè)定義在R上的函數(shù)f3(x)滿足對于任意實數(shù)x,y都有f3(x+y)=f3(x)•f3(y).求證:f3(x)為R上的凹函數(shù).

查看答案和解析>>

同步練習(xí)冊答案