【題目】在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.為曲線上的動(dòng)點(diǎn),點(diǎn)在射線上,且滿足.

(Ⅰ)求點(diǎn)的軌跡的直角坐標(biāo)方程;

(Ⅱ)設(shè)軸交于點(diǎn),過點(diǎn)且傾斜角為的直線相交于兩點(diǎn),求的值.

【答案】(Ⅰ);(Ⅱ).

【解析】

(Ⅰ)首先依據(jù)動(dòng)點(diǎn)的極坐標(biāo)的關(guān)系找到點(diǎn)的極坐標(biāo)方程,再化為直角坐標(biāo)方程;(Ⅱ)首先根據(jù)條件確定直線的參數(shù)方程,依據(jù)參數(shù)的幾何意義,結(jié)合解方程,利用韋達(dá)定理得到解.

(Ⅰ)設(shè)的極坐標(biāo)為,的極坐標(biāo)為

由題設(shè)知.所以,

的極坐標(biāo)方程,所以的直角坐標(biāo)方程為.

(Ⅱ)交點(diǎn),所以直線的參數(shù)方程為為參數(shù)),

曲線的直角坐標(biāo)方程

代入得:,,

設(shè)方程兩根為,則分別是對(duì)應(yīng)的參數(shù),

所以.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)有下列四個(gè)命題:

:若,則;

:若,則;

:“”是“為奇函數(shù)”的充要條件;

:“等比數(shù)列中,”是“等比數(shù)列是遞減數(shù)列”的充要條件.

其中,真命題的是  

A. ,B. C. ,D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知?jiǎng)訄AM經(jīng)過點(diǎn)F1,0),且與直線lx=﹣1相切,動(dòng)圓圓心M的軌跡記為曲線C

1)求曲線C的軌跡方程

2)若點(diǎn)Py軸左側(cè)(不含y軸)一點(diǎn),曲線C上存在不同的兩點(diǎn)A、B,滿足PAPB的中點(diǎn)都在曲線C上,設(shè)AB中點(diǎn)為E,證明:PE垂直于y軸.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù) 部分圖象如圖所示.

(1)求的最小正周期及解析式;

(2)設(shè),求函數(shù)在區(qū)間上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)分別是圓心在原點(diǎn),半徑為的圓上的動(dòng)點(diǎn).動(dòng)點(diǎn)從初始位置開始,按逆時(shí)針方向以角速度作圓周運(yùn)動(dòng),同時(shí)點(diǎn)從初始位置開始,按順時(shí)針方向以角速度作圓周運(yùn)動(dòng).記時(shí)刻,點(diǎn)的縱坐標(biāo)分別為.

(Ⅰ)求時(shí)刻,兩點(diǎn)間的距離;

(Ⅱ)求關(guān)于時(shí)間的函數(shù)關(guān)系式,并求當(dāng)時(shí),這個(gè)函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y22pxp0)的焦點(diǎn)為F,點(diǎn)A2,y0)為拋物線上一點(diǎn),且|AF|4

1)求拋物線的方程;

2)直線lyx+m與拋物線交于不同兩點(diǎn)P,Q,若,其中O為坐標(biāo)原點(diǎn),求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(2018·湖南師大附中摸底)已知直線l經(jīng)過點(diǎn)P(-4,-3),且被圓(x+1)2+(y+2)2=25截得的弦長(zhǎng)為8,則直線l的方程是________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn),點(diǎn)P是圓C:上的任意一點(diǎn),線段PQ的垂直平分線與直線CP交于點(diǎn)M.

求點(diǎn)M的軌跡方程;

過點(diǎn)作直線與點(diǎn)M的軌跡交于點(diǎn)E,過點(diǎn)作直線與點(diǎn)M的軌跡交于點(diǎn)F不重合,且直線AE和直線BF的斜率互為相反數(shù),直線EF的斜率是否為定值,若為定值,求出直線EF的斜率;若不是定值,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某鄉(xiāng)鎮(zhèn)政府為了解決農(nóng)村教師的住房問題,計(jì)劃征用一塊土地蓋一幢建筑總面積為10000公寓樓(每層的建筑面積相同).已知士地的征用費(fèi)為,土地的征用面積為第一層的倍,經(jīng)工程技術(shù)人員核算,第一層建筑費(fèi)用為,以后每增高一層,其建筑費(fèi)用就增加,設(shè)這幢公寓樓高層數(shù)為n,總費(fèi)用為萬元.(總費(fèi)用為建筑費(fèi)用和征地費(fèi)用之和)

1)若總費(fèi)用不超過835萬元,求這幢公寓樓最高有多少層數(shù)?

2)試設(shè)計(jì)這幢公寓的樓層數(shù),使總費(fèi)用最少,并求出最少費(fèi)用.

查看答案和解析>>

同步練習(xí)冊(cè)答案