定義在R上的奇函數(shù)f(x)在(0,+∞)上的解析式是f(x)=x(x-1),則f(x)的函數(shù)析式是
 
考點(diǎn):函數(shù)奇偶性的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:本題可以先利用函數(shù)f(x)是定義在R上的奇函數(shù),得到f(-x)=-f(x).由于已知x>0函數(shù)的解析式,根據(jù)f(x)=-f(-x),將自變量從x<0時(shí)轉(zhuǎn)化為-x,(-x>0),得到本題結(jié)論.
解答: 解:∵函數(shù)f(x)是定義在R上的奇函數(shù),
∴f(-x)=-f(x).
∴f(0)=0.
∵函數(shù)f(x)在(0,+∞)上的解析式是f(x)=x(x-1),
∴當(dāng)x<0時(shí),-x>0,
f(x)=-f(-x)=-[(-x)(-x-1)]=-x2-x.
∴f(x)=
x2-x,x>0
0,x=0
-x2-x,x<0
點(diǎn)評:本題考查了函數(shù)的奇偶性和解析式的關(guān)系,本題難度不大,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=xex,則函數(shù)y的導(dǎo)函數(shù)y′=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線y=kx+2與圓x2+y2=4相交于M,N兩點(diǎn),若|MN|≥2,則k的取值范圍是( 。
A、(-∞,-
3
3
]∪[
3
3
,+∞)
B、(-∞,-
3
3
)∪(
3
3
,+∞)
C、[-
3
3
,
3
3
]
D、(-∞,-
3
]∪[
3
,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知奇函數(shù)f(x)=px+
q
x
+r(實(shí)數(shù)p、q、r為常數(shù)),且滿足f(1)=
5
2
,f(2)=
17
4

(1)求函數(shù)f(x)的解析式;
(2)試判斷函數(shù)f(x)在區(qū)間(0,
1
2
]上的單調(diào)性,并用函數(shù)單調(diào)性定義證明;(3)當(dāng)x∈(0,
1
2
]時(shí),函數(shù)f(x)≥2-m恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)幾何體的三視圖如圖所示,則該幾何體的體積為(  )
A、12B、24C、40D、72

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若△ABC的內(nèi)角A、B,滿足
sinB
sinA
=2cos(A+B),則tanB的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正項(xiàng)等比數(shù)列{an},其前n項(xiàng)和為Sn,且滿足an+1<an,S3=
13
9
,a1a2a3=
1
27

(1)求{an}的通項(xiàng)公式;
(2)記數(shù)列bn=(2n+1)•an,其前n項(xiàng)和為Tn,求證:Tn<6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知三點(diǎn)A(1,a),B(a+1,-1),C(-2,7),若
AB
AC
,則實(shí)數(shù)a的值為(  )
A、-1或-3B、-1或3
C、1或-3D、1或3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,內(nèi)角A、B、C的對邊分別是a、b、c,若a2-b2=
3
bc,sinC=2
3
sinB,則
a2
b2
=
 
;A=
 

查看答案和解析>>

同步練習(xí)冊答案