【題目】一個(gè)多面體的直觀圖、正視圖、側(cè)視圖、俯視圖如圖,M,N分別為A1B,B1C1的中點(diǎn).
下列結(jié)論中正確的個(gè)數(shù)有 ( )
①直線MN與A1C相交.
②MN⊥BC.
③MN∥平面ACC1A1.
④三棱錐N-A1BC的體積為=a3.
A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)
【答案】B
【解析】取A1B1的中點(diǎn)D,連結(jié)DM、DN.
由于M、N分別是所在棱的中點(diǎn),
所以可得DN∥A1C1,DN平面A1AC1C,A1C1平面A1AC1C,所以DN∥平面A1AC1C.
同理可證DM∥平面A1AC1C.
又∵DM∩DN=D,
所以平面DMN∥平面A1AC1C,
所以直線MN與A1C 相交不成立,①錯(cuò)誤;
由三視圖可得A1C1⊥平面BCC1B1.
所以DN⊥平面BCC1B1,
所以DN⊥BC,
又易知DM⊥BC,
所以BC⊥平面DMN,
所以BC⊥MN,②正確;
由①中,平面DMN∥平面A1AC1C,
可得:MN∥平面ACC1A1,③正確;
因?yàn)?/span>a3,所以④正確.
綜上,②③④正確.
故選:B
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若二次函數(shù)f(x)=ax2+bx+c(a、b∈R)滿足f(x+1)﹣f(x)=2x,且f(0)=1.
(1)求f(x)的解析式;
(2)若在區(qū)間[﹣1,﹣1]上,不等式f(x)>2x+m恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC的三個(gè)頂點(diǎn)分別為A(0,4)、B(-2,6)、C(-8,0).
(1)分別求邊AC和AB所在直線的方程;
(2)求AC邊上的中線BD所在直線的方程;
(3)求AC邊的中垂線所在直線的方程;
(4)求AC邊上的高所在直線的方程;
(5)求經(jīng)過兩邊AB和AC的中點(diǎn)的直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知正方體ABCD-A1B1C1D1的棱長為a,過點(diǎn)B1作B1E⊥BD1于點(diǎn)E,求A、E兩點(diǎn)之間的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C的參數(shù)方程為 (θ為參數(shù)),若P是圓C與x軸的交點(diǎn),以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,設(shè)過點(diǎn)P的圓C的切線為l (Ⅰ)求直線l的極坐標(biāo)方程
(Ⅱ)求圓C上到直線ρ(cosθ+ sinθ)+6=0的距離最大的點(diǎn)的直角坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線 ﹣ =1(a>0,b>0)的左、右焦點(diǎn)分別為F1、F2 , 過點(diǎn)F1且垂直于x軸的直線與該雙曲線的左支交于A、B兩點(diǎn),AF2、BF2分別交y軸于P、Q兩點(diǎn),若△PQF2的周長為12,則ab取得最大值時(shí)該雙曲線的離心率為( )
A.
B.
C.2
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,橢圓E的左右頂點(diǎn)分別為A、B,左右焦點(diǎn)分別為F1、F2 , |AB|=4,|F1F2|=2 ,直線y=kx+m(k>0)交橢圓于C、D兩點(diǎn),與線段F1F2及橢圓短軸分別交于M、N兩點(diǎn)(M、N不重合),且|CM|=|DN|.
(Ⅰ)求橢圓E的離心率;
(Ⅱ)若m>0,設(shè)直線AD、BC的斜率分別為k1、k2 , 求 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,BD是正方形ABCD的對角線,弧的圓心是A,半徑為AB,正方形ABCD以AB為軸旋轉(zhuǎn),求圖中Ⅰ,Ⅱ,Ⅲ三部分旋轉(zhuǎn)所得旋轉(zhuǎn)體的體積之比.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com