規(guī)定一種運算:,例如:12=1,32=2,則函數(shù)的值域為                .
為a、b的最小值. 故可得為圖象的實線曲線. 故當(dāng)時,
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù)
(1)求的單調(diào)增區(qū)間和單調(diào)減區(qū)間;
(2)若當(dāng)時(其中e=2.71828…),不等式恒成立,求實數(shù)m的取值范圍;
(3)若關(guān)于x的方程上恰有兩個相異的實根,求實數(shù)a的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分15分)已知函數(shù)
(Ⅰ)當(dāng)時,判斷函數(shù)在定義域上的單調(diào)性;
(Ⅱ)若函數(shù)的圖象有兩個不同的交點,求的取值范圍;
(Ⅲ)設(shè)點是函數(shù)圖象上的兩點,平行于的切線以為切點,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)的定義域為,且. 設(shè)點是函數(shù)圖象上的任意一點,過點分別作直線軸的垂線,垂足分別為
(1)求的值;
(2)問:是否為定值?若是,則求出該定值,若不是,則說明理由;
(3)設(shè)為坐標(biāo)原點,求四邊形面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

.已知正弦波圖形如下:

此圖可以視為函數(shù)y=Asin(ωx+)(A>0,ω>0,||<)圖象的一部分,試求出其解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(1)當(dāng)時,求該函數(shù)的定義域和值域;
(2)如果在區(qū)間上恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)某廠家根據(jù)以往的經(jīng)驗得到有關(guān)生產(chǎn)銷售規(guī)律如下:每生產(chǎn)(百臺),其總成本為(萬元),其中固定成本2萬元,每生產(chǎn)1百臺需生產(chǎn)成本1萬元(總成本固定成本生產(chǎn)成本);銷售收入(萬元)滿足:(Ⅰ)要使工廠有盈利,求的取值范圍;
(Ⅱ)求生產(chǎn)多少臺時,盈利最多?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)(其中
(I)求函數(shù)f(x)的反函數(shù)
(II)設(shè),求函數(shù)g(x)最小值及相應(yīng)的x值;
(III)若不等式對于區(qū)間上的每一個x值都成立,求實數(shù)m的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

甲乙兩公司生產(chǎn)同一種新產(chǎn)品,經(jīng)測算,對于函數(shù),及任意的,當(dāng)甲公司投入萬元作宣傳時,乙公司投入的宣傳費若小于萬元,則乙公司有失敗的危險,否則無失敗的危險;當(dāng)乙公司投入萬元作宣傳時,甲公司投入的宣傳費若小于萬元,則甲公司有失敗的危險,否則無失敗的危險. 設(shè)甲公司投入宣傳費x萬元,乙公司投入宣傳費y萬元,建立如圖直角坐標(biāo)系,試回答以下問題:
(1)請解釋
(2)甲、乙兩公司在均無失敗危險的情況下盡可能少地投入宣傳費用,問此時各應(yīng)投入多少宣傳費?
(3)若甲、乙分別在上述策略下,為確保無失敗的危險,根據(jù)對方所投入的宣傳費,按最少投入費用原則,投入自己的宣傳費:若甲先投入萬元,乙在上述策略下,投入最少費用;而甲根據(jù)乙的情況,調(diào)整宣傳費為;同樣,乙再根據(jù)甲的情況,調(diào)整宣傳費為如此得當(dāng)甲調(diào)整宣傳費為時,乙調(diào)整宣傳費為;試問是否存在,的值,若存在寫出此極限值(不必證明),若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案