科目:高中數(shù)學(xué) 來源: 題型:
16.(2)解(1)當(dāng)a=1,b=-2時,g(x)=f(x)-2,把f(x)圖象向下平移兩個單位就可得到g(x)圖象,
這時函數(shù)g(x)只有兩個零點,所以(1)不對
(2)若a=-1,-2<b<0,則把函數(shù)f(x)作關(guān)于x軸對稱圖象,然后向下平移不超過2個單位就可得到g(x)圖象,這時g(x)有超過2的零點
(3)當(dāng)a<0時, y=af(x)根據(jù)定義可斷定是奇函數(shù),如果b≠0,把奇函數(shù)y=af(x)圖象再向上(或向下)平移后才是y=g(x)=af(x)+b的圖象,那么肯定不會再關(guān)于原點對稱了,肯定不是奇函數(shù);當(dāng)b=0時才是奇函數(shù),所以(3)不對。所以正確的只有(2)
一盒中放有大小相同的紅色、綠色、黃色三種小球,已知紅球個數(shù)是綠球個數(shù)的兩倍,黃球個數(shù)是綠球個數(shù)的一半,現(xiàn)在從該盒中隨機取出一球,若取出紅球得1分,取出黃球得0分,取出綠球得-1分,試寫出從該盒中取出一球所得分數(shù)Y的分布列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012年全國普通高等學(xué)校招生統(tǒng)一考試文科數(shù)學(xué)(湖南卷解析版) 題型:解答題
已知函數(shù)f(x)=ex-ax,其中a>0.
(1)若對一切x∈R,f(x) 1恒成立,求a的取值集合;
(2)在函數(shù)f(x)的圖像上去定點A(x1, f(x1)),B(x2, f(x2))(x1<x2),記直線AB的斜率為k,證明:存在x0∈(x1,x2),使恒成立.
【解析】解:令.
當(dāng)時單調(diào)遞減;當(dāng)時單調(diào)遞增,故當(dāng)時,取最小值
于是對一切恒成立,當(dāng)且僅當(dāng). 、
令則
當(dāng)時,單調(diào)遞增;當(dāng)時,單調(diào)遞減.
故當(dāng)時,取最大值.因此,當(dāng)且僅當(dāng)時,①式成立.
綜上所述,的取值集合為.
(Ⅱ)由題意知,令則
令,則.當(dāng)時,單調(diào)遞減;當(dāng)時,單調(diào)遞增.故當(dāng),即
從而,又
所以因為函數(shù)在區(qū)間上的圖像是連續(xù)不斷的一條曲線,所以存在使即成立.
【點評】本題考查利用導(dǎo)函數(shù)研究函數(shù)單調(diào)性、最值、不等式恒成立問題等,考查運算能力,考查分類討論思想、函數(shù)與方程思想等數(shù)學(xué)方法.第一問利用導(dǎo)函數(shù)法求出取最小值對一切x∈R,f(x) 1恒成立轉(zhuǎn)化為從而得出求a的取值集合;第二問在假設(shè)存在的情況下進行推理,然后把問題歸結(jié)為一個方程是否存在解的問題,通過構(gòu)造函數(shù),研究這個函數(shù)的性質(zhì)進行分析判斷.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
一張矩形紙片,剪下一個正方形,剩下一個矩形,稱為第一次操作;在剩下的矩形紙片中再剪下一個正方形,剩下一個矩形,稱為第二次操作;…;若在第n次操作后,剩下的矩形為正方形,則稱原矩形為n階奇異矩形.如圖1,矩形ABCD中,若,,則稱矩形ABCD為2階奇異矩形.
(1)判斷與操作:
如圖2,矩形ABCD長為5,寬為2,它是奇異矩形嗎?如果是,請寫出它是幾階奇異矩形,并在圖中畫出裁剪線;如果不是,請說明理由.
(2)探究與計算:
已知矩形ABCD的一邊長為20,另一邊長為(a < 20),且它是3階奇異矩形,請畫出矩形ABCD及裁剪線的示意圖,并在圖的下方寫出的值.
(3)歸納與拓展:
已知矩形ABCD兩鄰邊的長分別為b,c(b < c),且它是4階奇異矩形,求b︰c(直接寫出結(jié)果).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知定義域為R的函數(shù)f(x)滿足f(-x)= -f(x+4),當(dāng)x>2時,f(x)單調(diào)遞增,如果x1+x2<4且(x1-2)(x2-2)<0,則f(x1)+f(x2)的值 ( ) A.恒小于0 B.恒大于0 C.可能為0 D.可正可負 查看答案和解析>> 科目:高中數(shù)學(xué) 來源: 題型: 吉林省吉林一中2011屆高三下學(xué)期沖刺試題一(數(shù)學(xué)理).doc | | |
|