已知二面角
的平面角為
,
AB⊥
BC,
BC⊥
CD,
,
BC在
l上,
,若
,則
AD的長為
.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
把正方形
ABCD沿對角線
AC折起成直二面角,點
E、
F分別是
AD、
BC的中點,點
O是原正方形的中心,求:
(1)
EF的長;
(2)折起后∠
EOF的大小.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知斜三棱柱
ABC—
A1B1C1中,
A1C1=
B1C1=2,
D、
D1分別是
AB、
A1B1的中點,平面
A1ABB1⊥平面
A1B1C1,異面直線
AB1和
C1B互相垂直.
(1)求證:
AB1⊥
C1D1;
(2)求證:
AB1⊥面
A1CD;
(3)若
AB1=3,求直線
AC與平面
A1CD所成的角.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知:如圖12,P是正方形ABCD所在平面外一點,PA=PB=PC=PD=a,AB=a.
求:平面APB與平面CPD相交所成較大的二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
如圖,將Rt△ABC沿斜邊上的高AD折成120
0的二面角C-AD-
,若直角邊AB=
,AC=
,則二面角A-B
-D的正切值為( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)在長方體
ABCD—
A1B1C1D1中,
AA1=1,
AD=DC=.(1)求直線
A1C與
D1C1所成角的正切值;(2)在線段
A1C上有一點
Q,且
C1Q=
C1A1,求平面
QDC與平面
A1DC所成銳二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
如圖∠BAC=90°,等腰直角三角形ABC所在的平面與正方形ABDE所在的平面互相垂直,則異面直線AD與BC所成角的大小是_______.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
如圖,三棱錐P-ABC中,PA⊥平面ABC,△ABC是等邊三角形,E是BC中點,若PA=AB,則異面直線PE與AB所成角的余弦值( 。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,四面體ABCD中,O、E分別是BD、BC的中點,AO⊥平面BCD,CA=CB=CD=BD=2.
(1)求證:面ABD⊥面AOC;
(2)求異面直線AE與CD所成角的大。
查看答案和解析>>