設(shè)△ABC的內(nèi)角A,B,C所對的邊分別是a,b,c,若sinA,sinC,sinB成等差數(shù)列,且3c=5a,則角B=( 。
A、
π
3
B、
3
C、
π
6
D、
π
2
考點:正弦定理
專題:解三角形
分析:由條件利用正弦定理可得2c=a+b,再根據(jù)3c=5a,可得a=
3
5
c,b=
7c
5
.利用余弦定理可得cosB=
a2+c2-b2
2ac
的值,可得B的值.
解答: 解:△ABC中,∵sinA,sinC,sinB成等差數(shù)列,∴2sinC=sinA+sinB,即2c=a+b.
再根據(jù)3c=5a,可得a=
3
5
c,b=
7c
5

利用余弦定理可得cosB=
a2+c2-b2
2ac
=-
1
2
,∴B=
3
,
故選:B.
點評:本題主要考查正弦定理和余弦定理的應(yīng)用,等差數(shù)列的定義和性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若在區(qū)間[0,1]上存在實數(shù)x使2x(3x+a)<1成立,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題“若α=
π
4
,則tanα=1”的逆否命題是( 。
A、若tanα≠1,則α≠
π
4
B、若α=
π
4
,則tanα≠1
C、若α≠
π
4
,則tanα≠1
D、若tanα≠1,則α=
π
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a=x3,b=x2-x+1,當(dāng)x>1時,a與b的大小關(guān)系是( 。
A、a<bB、a=b
C、a>bD、不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

四面體ABCD中,AD與BC互相垂直,AD=2BC=4,且AB+BD=AC+CD=2
14
,則四面體ABCD的體積的最大值是( 。
A、4
B、2
10
C、5
D、
30

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

拋物線:y=4ax2的焦點坐標(biāo)為( 。
A、(
1
4a
,0)
B、(0,
1
16a
C、(0,-
1
16a
D、(
1
16a
,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列選項中,說法正確的是( 。
A、命題“若x2=1,則x=1”的否命題為:“若x2=1,則x≠1”
B、命題“若am2<bm2,則a<b”的逆命題是真命題
C、命題“?x∈R,x2-x+1≥0”的否定是:“?x0∈R,x02-x0+1≤0”
D、命題“若x=y,則cosx=cosy”的逆否命題為真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知動點P(x,y)在橢圓C:
x2
25
+
y2
16
=1上,F(xiàn)為橢圓C的右焦點,若點M滿足|
MF
|=1且
MP
MF
=0,則
|
PM
|的最大值為( 。
A、
3
B、
63
C、8
D、63

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在正方體ABCD-A1B1C1D1中,E、F、G、H分別是BC、C1C、C1D1、A1A的中點.求證:
(1)BF∥HD1
(2)EG∥平面BB1D1D;
(3)平面BDF∥平面B1D1H.

查看答案和解析>>

同步練習(xí)冊答案