已知等邊三角形的邊長(zhǎng)為3,點(diǎn)D,E分別在邊AB,AC上,且滿足
AD
DB
=
CE
EA
=
1
2
,將△ADE沿DE折疊到△A1DE的位置,使平面A1DE⊥平面BCDE,連接A1B,A1C.
(1)證明:A1D⊥平面BCDE;
(2)在線段BD上是否存在點(diǎn)M,使得CM∥平面A1DE?若存在,求出BM的長(zhǎng);若不存在,說(shuō)明理由.
考點(diǎn):平面與平面垂直的性質(zhì),直線與平面垂直的判定
專(zhuān)題:空間位置關(guān)系與距離
分析:(1)由已知條件推導(dǎo)出DE⊥AD,折疊后有DE⊥A1D,由此能證明A1D⊥平面BCDE.
(2)過(guò)C作BD邊的垂線,垂直即為所求的點(diǎn)M.M為BC邊的中點(diǎn),BM=
3
2
解答: (1)證明:在△ABC中,
AD
DB
=
CE
EA
=
1
2
,等邊三角形的邊長(zhǎng)為3,
∴AD=CE=1,BD=AE=2,
在△ADE中,∠A=60°,AD=1,AE=2,
由余弦定理,得DE=
3

∴AE2=AD2+DE2,
∴△ADE為直角三角形,且DE⊥AD,
折疊后有DE⊥A1D,
∵平面A1DE⊥平面BCDE,
平面A1DE∩平面BCDE=DE,
A1D?平面A1DE,∴A1D⊥平面BCDE.
(2)解:過(guò)C作BD邊的垂線,垂足即為所求的點(diǎn)M.
證明:由(1)知DE⊥AB于E,于是DE∥CM,
∵CM不包含于平面A1DE,DE?平面A1DE.
∴CM∥平面A1DE,
∵M(jìn)為BC邊的中點(diǎn),∴BM=
3
2
點(diǎn)評(píng):本題考查直線與平面垂直的證明,考查使直線平行于平面的點(diǎn)是否存在的判斷與證明,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

閱讀程序(如圖),若a=45,b=20,c=10,則輸出的結(jié)果為( 。
A、10B、20C、25D、45

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知F1、F2是橢圓
x2
a2
+
y2
b2
=1的左、右焦點(diǎn),O為坐標(biāo)原點(diǎn),點(diǎn)P(-1,
2
2
)在橢圓上,線段PF2與y軸的交點(diǎn)M滿足
PM
+
F2M
=
0
;
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)⊙O是以F1F2為直徑的圓,一直線l:y=kx+m與⊙O相切,并與橢圓交于不同的兩點(diǎn)A、B.當(dāng)
OA
OB
=λ且滿足
2
3
≤λ≤
3
4
時(shí),求△AOB面積S的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,一科學(xué)考察船從港口O出發(fā),沿北偏東α角的射線OZ方向航行,而在離港口3
13
海里的北偏東β角的A處有一個(gè)供給科考船物資的小島,其中tanα=
1
3
,tanβ=
3
2
.現(xiàn)指揮部需要緊急征調(diào)沿海岸線港口O正東t(t>7)海里的B處的補(bǔ)給船,速往小島A裝運(yùn)物資供給科考船,該船沿BA方向全速追趕科考船,并在C處相遇.經(jīng)測(cè)算當(dāng)兩船運(yùn)行的航向與海岸線OB圍成的三角形OBC的面積最小時(shí),這種補(bǔ)給最適宜.
(1)求S關(guān)于t的函數(shù)關(guān)系式S(t);
(2)應(yīng)征調(diào)t為何值處的船只,補(bǔ)給最適宜.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}中,a5=8,a10=18,三點(diǎn)(a1,0)、(a2,2)、(a3,0)在圓C上,
(Ⅰ)求圓C的方程;
(Ⅱ)若直線l:mx+ny+1=0被圓C所截得的弦長(zhǎng)為2
3
,求m2+n2的最小值;
(Ⅲ)若一條動(dòng)直線與圓C交于A、B兩點(diǎn),且總有|OA|•|OB|=8,(點(diǎn)O為坐標(biāo)原點(diǎn)),試探究直線AB是否恒與一個(gè)定圓相切,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ln(1+x)-
ax
x+2

(Ⅰ)當(dāng)a=0時(shí),求曲線y=f(x)在原點(diǎn)處的切線方程;
(Ⅱ)當(dāng)a>0時(shí),討論函數(shù)f(x)在區(qū)間(0,+∞)上的單調(diào)性;
(Ⅲ)證明不等式
1
3
+
1
5
+…+
1
2n+1
<ln
n+1
對(duì)任意n∈N*成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,三棱錐C-ABD中,AB=AD=BD=BC=CD=2,O為BD的中點(diǎn),∠AOC=120°,P為AC上一點(diǎn),Q為AO上一點(diǎn),且
AP
PC
=
AQ
QO
=2

(Ⅰ)求證:PQ∥平面BCD;
(Ⅱ)求三棱錐P-ABD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

橢圓的中心是原點(diǎn)O,它的長(zhǎng)軸長(zhǎng)為2a,短軸長(zhǎng)為2
2
,右焦點(diǎn)為F(c,0)(c>0),設(shè)點(diǎn)A(
a2
c
,0),|OF|=2|FA|,過(guò)點(diǎn)A的直線與橢圓相交于P,Q兩點(diǎn)
(1)求橢圓的方程及離心率;
(2)若
.
OP
.
OQ
=0,求直線PQ的方程;
(3)設(shè)
.
AP
.
AQ
(λ>1),過(guò)點(diǎn)P作x軸的垂線與橢圓相交于另一點(diǎn)M,證明
.
FM
=-λ
.
FQ

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)據(jù):0,2,3,4,6的方差為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案