【題目】已知拋物線的焦點到直線的距離為.

(1)求拋物線的標準方程;

(2)設點是拋物線上的動點,若以點為圓心的圓在軸上截得的弦長均為4,求證:圓恒過定點.

【答案】(1) ;(2)證明見解析.

【解析】試題分析:

(1)由題意可得拋物線的焦點坐標為利用點到直線距離公式得到關于實數(shù)p的方程,解方程可得拋物線的標準方程是.

(2)設圓心的坐標為,半徑為,由題意結合勾股定理有則圓的標準方程整理變形可得,該方程對于任意的均成立,則據(jù)此可得圓過一定點為.

試題解析:

(1)由題意, ,焦點坐標為

由點到直線的距離公式,得

所以拋物線的標準方程是.

(2)設圓心的坐標為,半徑為,圓軸上截得的弦長為,

所以,

的標準方程:

化簡得: ,

對于任意的,方程①均成立,

故有: 解得: ,所以,圓過一定點為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,曲線的參數(shù)方程是 (為參數(shù)),以原點為極點, 軸正半軸為極軸,建立極坐標系,直線的極坐標方程為.

(Ⅰ)求曲線的普通方程與直線的直角坐標方程;

(Ⅱ)已知直線與曲線交于, 兩點,與軸交于點,求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知動點E到點A與點B的直線斜率之積為,點E的軌跡為曲線C

(1)求C的方程;

2)過點D作直線l與曲線C交于 兩點,求的最大值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖, , 中點,且平面 .已知.

(1)求直線所成角;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知某運動員每次投籃命中的概率為80%.現(xiàn)采用隨機模擬的方法估計該運動員三次投籃恰有兩次命中的概率:先由計算器產(chǎn)生09之間取整數(shù)值的隨機數(shù),指定1,2,3,4,5,6,7,8表示命中,9,0表示未命中;再以每三個隨機數(shù)為一組,代表三次投籃的結果.經(jīng)隨機模擬產(chǎn)生了如下20組隨機數(shù):

907

966

191

925

271

932

812

458

569

683

431

257

393

027

556

488

730

113

537

989

據(jù)此估計,該運動員三次投籃均命中的概率為( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) .

(1)討論函數(shù)的單調(diào)性;

(2)已知,若函數(shù)恒成立,試確定的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】自出生之日起,人的情緒、體力、智力等心理、生理狀況就呈周期變化,變化由線為.根據(jù)心理學家的統(tǒng)計,人體節(jié)律分為體力節(jié)律、情緒節(jié)律和智力節(jié)律三種.這些節(jié)律的時間周期分別為23天、28天、33.每個節(jié)律周期又分為高潮期、臨界日和低潮期三個階段.以上三個節(jié)律周期的半數(shù)為臨界日,這就是說11.5天、14天、16.5天分別為體力節(jié)律、情緒節(jié)律和智力節(jié)律的臨界日.臨界日的前半期為高潮期,后半期為低潮期.生日前一天是起始位置(平衡位置),已知小英的生日是2003320日(每年按365天計算).

1)請寫出小英的體力、情緒和智力節(jié)律曲線的函數(shù);

2)試判斷小英在2019422日三種節(jié)律各處于什么階段,當日小英是否適合參加某項體育競技比賽?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我國是世界上嚴重缺水的國家,某市為了制定合理的節(jié)水方案,對居民用水情況進行調(diào)查,通過抽樣,獲得某年100為居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照分成9組,制成了如圖所示的頻率分布直方圖.

(1)求直方圖的的值;

(2)設該市有30萬居民,估計全市居民中月均用水量不低于3噸的人數(shù),說明理由.

(3)估計居民月用水量的中位數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中為自然對數(shù)的底數(shù).

(Ⅰ)求的值;

(Ⅱ)寫出函數(shù)的單調(diào)遞減區(qū)間(無需證明) ;

(Ⅲ)若實數(shù)滿足,則稱的二階不動點,求函數(shù)的二階不動點的個數(shù).

查看答案和解析>>

同步練習冊答案