20.計算:log2$\frac{\sqrt{2}}{2}$=$-\frac{1}{2}$.

分析 利用對數(shù)的原式性質(zhì)即可得出.

解答 解:原式=$lo{g}_{2}{2}^{-\frac{1}{2}}$=-$\frac{1}{2}$.
故答案為:-$\frac{1}{2}$.

點(diǎn)評 本題考查了指數(shù)與對數(shù)的運(yùn)算性質(zhì),考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知定義在R上的奇函數(shù)f(x)滿足f(-x)=-f(x),f(x+1)=f(1-x),且當(dāng)x∈[0,1]時,f(x)=log2(x+1),則f(31)=(  )
A.0B.1C.-1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.將函數(shù)f(x)=sin(x+$\frac{π}{6}$)的圖象向左平移$\frac{π}{4}$個單位,所得函數(shù)g(x)圖象的一個對稱中心可以是( 。
A.($\frac{π}{12}$,0)B.(-$\frac{π}{12}$,0)C.($\frac{7π}{12}$,0)D.(-$\frac{π}{4}$,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.2016年國慶期間,某大型商場舉行購物送劵活動,一名顧客計劃到該商場購物,他有三張商場優(yōu)惠劵,商場規(guī)定每購買一件商品只能使用一張優(yōu)惠劵,根據(jù)購買商品的標(biāo)價,三張優(yōu)惠劵的優(yōu)惠方式不同,具體如下:
優(yōu)惠劵A:若商品標(biāo)價超過100元,則付款時減免標(biāo)價的10%;
優(yōu)惠劵B:若商品標(biāo)價超過200元,則付款時減免30元;
優(yōu)惠劵C:若商品標(biāo)價超過200元,則付款時減免超過200元部分的20%.
若顧客想使用優(yōu)惠劵C,并希望比使用優(yōu)惠劵A或優(yōu)惠劵B減免的錢都多,則他購買的商品的標(biāo)價應(yīng)高于( 。
A.300元B.400元C.500元D.600元

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.用min{a,b}表示a,b兩數(shù)中的最小值,若f(x)=min{|x|,|x+t|}的圖象關(guān)于直線x=-$\frac{3}{2}$對稱,則t的值為( 。
A.-3B.3C.-6D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知命題p:函數(shù)f(x)=lg(ax2-4x+a)的定義域?yàn)镽;命題q:不等式2x2+x>2+ax,對?x∈(-∞,-1)上恒成立.
(1)若命題p為真命題,求實(shí)數(shù)a的取值范圍;
(2)若“p∨q”為真命題,命題“p∧q”為假命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知i為虛數(shù)單位,復(fù)數(shù)z滿足$\frac{z}{z-i}$=i,則z=(  )
A.$\frac{1}{2}+\frac{1}{2}i$B.$\frac{1}{2}-\frac{1}{2}i$C.$-\frac{1}{2}+\frac{1}{2}i$D.$-\frac{1}{2}-\frac{1}{2}i$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)x,y滿足$\left\{\begin{array}{l}{x≤y}\\{y≤10-2x}\\{x≥1}\end{array}\right.$,$\overrightarrow{a}$=(2x-y,m),$\overrightarrow$=(-1,1)}${x≥1}\end{array}$,若$\overrightarrow{a}$∥$\overrightarrow$,則m的最大值為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)f(x)=$\left\{\begin{array}{l}ln({1-x}),x<0\\{({x-1})^3}+1,x≥0\end{array}$,若f(x)≥ax恒成立,則實(shí)數(shù)a的取值范圍是( 。
A.$[{0,\frac{2}{3}}]$B.$[{0,\frac{3}{4}}]$C.[0,1]D.$[{0,\frac{3}{2}}]$

查看答案和解析>>

同步練習(xí)冊答案