【題目】如圖,在四棱錐中,底面是菱形,且.

是棱的中點,平面與棱交于點.

1求證:;

2,且平面平面,求平面與平面所成的銳二面角的余弦值.

【答案】1證明見解析;2.

【解析】

試題分析:對1,先根據(jù)菱形的性質(zhì)得到,進而得到,接下來根據(jù)四點共面,且平面平面,即可得到結(jié)論;對于2,取中點,連接,根據(jù)等腰三角形的性質(zhì)以及線面垂直的知識得到,進而根據(jù)菱形的性質(zhì)得到,建立空間直角坐標系,利用向量運算解決.

試題解析:1證明:因為底面是菱形,所以.

又因為,,所以.

又因為四點共面,且平面平面,

所以.

2中點,連接.因為,所以.又因為平面平面,且平面平面, 所以平面.所以.在菱形中,因為中點,所以.

如圖,建立空間直角坐標系.設(shè),

.

又因為,點是棱中點,所以點是棱中點.所以.所以.

設(shè)平面的法向量為,則有所以

,則平面的一個法向量為.

因為平面,所以是平面的一個法向量.

因為,

所以平面與平面所成的銳二面角的余弦值為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分12分)已知函數(shù)在其定義域內(nèi)有兩個不同的極值點.

(1)求實數(shù)的取值范圍;

(2)設(shè)兩個極值點分別為,證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓經(jīng)過兩點,且圓心在直線.

)求圓的標準方程;

)設(shè)直線經(jīng)過點,且與圓相交所得弦長為,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知有窮數(shù)列:,,,……,的各項均為正數(shù),且滿足條件:

;.

(1)若,,求出這個數(shù)列;

(2)若,求的所有取值的集合;

(3)若是偶數(shù),求的最大值(用表示).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某投資公司計劃投資A,B兩種金融產(chǎn)品,根據(jù)市場調(diào)查與預測,A產(chǎn)品的利潤y1與投資金額x的函數(shù)關(guān)系為y118,B產(chǎn)品的利潤y2與投資金額x的函數(shù)關(guān)系為y2(注:利潤與投資金額單位:萬元).

(1)該公司已有100萬元資金,并全部投入A,B兩種產(chǎn)品中,其中x萬元資金投入A產(chǎn)品,試把A,B兩種產(chǎn)品利潤總和表示為x的函數(shù),并寫出定義域;

(2)在(1)的條件下,試問:怎樣分配這100萬元資金,才能使公司獲得最大利潤?其最大利潤為多少萬元?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)數(shù)列的前項和為, 成等差數(shù)列。

(1證明為等比數(shù)列,并求數(shù)列的通項;

(2)設(shè),且,證明。

(3)在(2)小問的條件下,若對任意的,不等式恒成立,試求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知圓過坐標原點且圓心在曲線上.

(1)若圓分別與軸、軸交于點、(不同于原點),求證:的面積為定值;

(2)設(shè)直線與圓交于不同的兩點,且,求圓的方程;

(3)設(shè)直線(2)中所求圓交于點、, 為直線上的動點,直線,與圓的另一個交點分別為,,且,在直線異側(cè),求證:直線過定點,并求出定點坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某高中有高一新生500名,分成水平相同的兩類教學實驗,為對比教學效果,現(xiàn)用分層抽樣的方法從兩類學生中分別抽取了40人,60人進行測試

1)求該學校高一新生兩類學生各多少人?

2)經(jīng)過測試,得到以下三個數(shù)據(jù)圖表:

175分以上兩類參加測試學生成績的莖葉圖

2100名測試學生成績的頻率分布直方圖

下圖表格:100名學生成績分布表:

先填寫頻率分布表中的六個空格,然后將頻率分布直方圖(圖2)補充完整;

該學校擬定從參加考試的79分以上(含79分)的類學生中隨機抽取2人代表學校參加市比賽,求抽到的2人分數(shù)都在80分以上的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《九章算術(shù)》是我國古代數(shù)學成就的杰出代表,其中《方田》章有弧田面積計算問題,計算術(shù)曰:以弦乘矢,矢又自乘,并之,二而一.其大意是,弧田面積計算公

式為:弧田面積=,弧田是由圓。ê喎Q為弧田。┖鸵詧A

弧的兩端為頂點的線段(簡稱為弧田弦)圍成的平面圖形,公式中“弦”指的是弧

田弦的長,“矢”等于弧田弧所在圓的半徑與圓心到弧田弦的距離之差.現(xiàn)有一弧

田,其弦長AB等于6米,其弧所在圓為圓O,若用上述弧田面積計算公式算得該

弧田的面積為平方米,則cos∠AOB= ( )

A. B. C. D.

查看答案和解析>>

同步練習冊答案