【題目】如圖,在四棱錐中,平面,四邊形是直角梯形,.

(1)求二面角的余弦值;

(2)設(shè)是棱上一點(diǎn),的中點(diǎn),若與平面所成角的正弦值為,求線段的長.

【答案】(1) ;(2) .

【解析】試題分析:(1)建立空間坐標(biāo)系:,,,所以,,.設(shè)平面的法向量為,由,,得.取,得,

所以是平面的一個法向量.因?yàn)?/span>平面ABC,取平面ABC的一個法向量.設(shè)二面角的大小為,所以,(2)由(1)知,則.設(shè)),則,

所以.易知平面,所以是平面的一個法向量.設(shè)與平面所成的角為,所以, 即

試題解析:

(1)以D為坐標(biāo)原點(diǎn),建立如圖所示空間

直角坐標(biāo)系,

,,,

所以,,

設(shè)平面的法向量為

,,得

,得,,

所以是平面的一個法向量.

因?yàn)?/span>平面ABC,取平面ABC的一個法向量

設(shè)二面角的大小為,所以,

由圖可知二面角為銳二面角,所以二面角的余弦值為

(2)由(1)知,則,

設(shè)),則,

所以

易知平面,所以是平面的一個法向量.

設(shè)與平面所成的角為,

所以, 即,得(舍).所以,所以線段的長為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,C是⊙O上一點(diǎn),∠ACD=∠B,AD⊥CD.

(1)求證:CD是⊙O的切線;
(2)若AD=1,OA=2,求AC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知橢圓的左焦點(diǎn)為,過點(diǎn)F做x軸的垂線交橢圓于A,B兩點(diǎn),且

(1)求橢圓C的標(biāo)準(zhǔn)方程:

(2)若M,N為橢圓上異于點(diǎn)A的兩點(diǎn),且直線的傾斜角互補(bǔ),問直線MN的斜率是否為定值?若是,求出這個定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列{an}的公差d>0,則下列四個命題: ①數(shù)列{an}是遞增數(shù)列;
②數(shù)列{nan}是遞增數(shù)列;
③數(shù)列 是遞增數(shù)列;
④數(shù)列{an+3nd}是遞增數(shù)列;
其中正確命題的個數(shù)為(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的程序框圖表示的算法功能是(  )

A. 計(jì)算小于100的奇數(shù)的連乘積

B. 計(jì)算從1開始的連續(xù)奇數(shù)的連乘積

C. 1開始的連續(xù)奇數(shù)的連乘積,當(dāng)乘積大于或等于100,計(jì)算奇數(shù)的個數(shù)

D. 計(jì)算1×3×5×…×n100時的最小的n的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線yx3,求:

(1)曲線在點(diǎn)P(1,1)處的切線方程;

(2)過點(diǎn)P(1,0)的曲線的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】 【2016高考新課標(biāo)文數(shù)】已知拋物線的焦點(diǎn)為,平行于軸的兩條直線分別交兩點(diǎn),交的準(zhǔn)線于兩點(diǎn).

(I)若在線段上,的中點(diǎn),證明;

(II)若的面積是的面積的兩倍,求中點(diǎn)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【2016高考四川文科】在平面直角坐標(biāo)系中,當(dāng)P(x,y)不是原點(diǎn)時,定義P伴隨點(diǎn);當(dāng)P是原點(diǎn)時,定義P伴隨點(diǎn)為它自身,現(xiàn)有下列命題:

若點(diǎn)A的伴隨點(diǎn)是點(diǎn),則點(diǎn)伴隨點(diǎn)是點(diǎn)A.

單元圓上的伴隨點(diǎn)還在單位圓上.

若兩點(diǎn)關(guān)于x軸對稱,則他們的伴隨點(diǎn)關(guān)于y軸對稱

若三點(diǎn)在同一條直線上,則他們伴隨點(diǎn)一定共線.

其中的真命題是 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在等比數(shù)列中, ,且的等比中項(xiàng)為.

1)求數(shù)列的通項(xiàng)公式;

2)設(shè),數(shù)列的前項(xiàng)和為,是否存在正整數(shù),使得對任意恒成立?若存在,求出正整數(shù)的最小值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案