【題目】如圖,在四棱錐中,平面,四邊形是直角梯形,.
(1)求二面角的余弦值;
(2)設(shè)是棱上一點(diǎn),是的中點(diǎn),若與平面所成角的正弦值為,求線段的長.
【答案】(1) ;(2) .
【解析】試題分析:(1)建立空間坐標(biāo)系:則,,,,所以,,.設(shè)平面的法向量為,由,,得且.取,得,,
所以是平面的一個法向量.因?yàn)?/span>平面ABC,取平面ABC的一個法向量.設(shè)二面角的大小為,所以,(2)由(1)知,則,.設(shè)(),則,
所以.易知平面,所以是平面的一個法向量.設(shè)與平面所成的角為,所以, 即
試題解析:
(1)以D為坐標(biāo)原點(diǎn),建立如圖所示空間
直角坐標(biāo)系,
則,,,,
所以,,.
設(shè)平面的法向量為,
由,,得且.
取,得,,
所以是平面的一個法向量.
因?yàn)?/span>平面ABC,取平面ABC的一個法向量.
設(shè)二面角的大小為,所以,
由圖可知二面角為銳二面角,所以二面角的余弦值為.
(2)由(1)知,則,.
設(shè)(),則,
所以.
易知平面,所以是平面的一個法向量.
設(shè)與平面所成的角為,
所以, 即,得或(舍).所以,,所以線段的長為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C是⊙O上一點(diǎn),∠ACD=∠B,AD⊥CD.
(1)求證:CD是⊙O的切線;
(2)若AD=1,OA=2,求AC的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓的左焦點(diǎn)為,過點(diǎn)F做x軸的垂線交橢圓于A,B兩點(diǎn),且.
(1)求橢圓C的標(biāo)準(zhǔn)方程:
(2)若M,N為橢圓上異于點(diǎn)A的兩點(diǎn),且直線的傾斜角互補(bǔ),問直線MN的斜率是否為定值?若是,求出這個定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列{an}的公差d>0,則下列四個命題: ①數(shù)列{an}是遞增數(shù)列;
②數(shù)列{nan}是遞增數(shù)列;
③數(shù)列 是遞增數(shù)列;
④數(shù)列{an+3nd}是遞增數(shù)列;
其中正確命題的個數(shù)為( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的程序框圖表示的算法功能是( )
A. 計(jì)算小于100的奇數(shù)的連乘積
B. 計(jì)算從1開始的連續(xù)奇數(shù)的連乘積
C. 從1開始的連續(xù)奇數(shù)的連乘積,當(dāng)乘積大于或等于100時,計(jì)算奇數(shù)的個數(shù)
D. 計(jì)算1×3×5×…×n≥100時的最小的n的值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線y=x3,求:
(1)曲線在點(diǎn)P(1,1)處的切線方程;
(2)過點(diǎn)P(1,0)的曲線的切線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】 【2016高考新課標(biāo)Ⅲ文數(shù)】已知拋物線:的焦點(diǎn)為,平行于軸的兩條直線分別交于兩點(diǎn),交的準(zhǔn)線于兩點(diǎn).
(I)若在線段上,是的中點(diǎn),證明;
(II)若的面積是的面積的兩倍,求中點(diǎn)的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2016高考四川文科】在平面直角坐標(biāo)系中,當(dāng)P(x,y)不是原點(diǎn)時,定義P的“伴隨點(diǎn)”為;當(dāng)P是原點(diǎn)時,定義P的“伴隨點(diǎn)”為它自身,現(xiàn)有下列命題:
若點(diǎn)A的“伴隨點(diǎn)”是點(diǎn),則點(diǎn)的“伴隨點(diǎn)”是點(diǎn)A.
單元圓上的“伴隨點(diǎn)”還在單位圓上.
若兩點(diǎn)關(guān)于x軸對稱,則他們的“伴隨點(diǎn)”關(guān)于y軸對稱
④若三點(diǎn)在同一條直線上,則他們的“伴隨點(diǎn)”一定共線.
其中的真命題是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在等比數(shù)列中, ,且的等比中項(xiàng)為.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),數(shù)列的前項(xiàng)和為,是否存在正整數(shù),使得對任意恒成立?若存在,求出正整數(shù)的最小值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com