已知函數(shù),.
(1)求證:函數(shù)上單調(diào)遞增;
(2)若函數(shù)有四個(gè)零點(diǎn),求的取值范圍.
(1)詳見解析;(2)實(shí)數(shù)的取值范圍是.

試題分析:(1)直接利用導(dǎo)數(shù)證明函數(shù)上單調(diào)遞增,在證明過程中注意導(dǎo)函數(shù)的單調(diào)性;(2)將函數(shù)的零點(diǎn)個(gè)數(shù)問題轉(zhuǎn)化為函數(shù)圖象的交點(diǎn)個(gè)數(shù)問題處理,但需注意將式子中的絕對(duì)值符號(hào)去掉,并借助函數(shù)的最值出發(fā),構(gòu)造有關(guān)參數(shù)的不等式組,再求解參數(shù)的取值范圍.
試題解析:(1),,

,所以,且函數(shù)上單調(diào)遞增,
故函數(shù)上單調(diào)遞增,,即,
故函數(shù)上單調(diào)遞增;
(2),
,當(dāng)時(shí),,則,所以
,故函數(shù)上單調(diào)遞減,由(1)知,函數(shù)上單調(diào)遞增,
故函數(shù)處取得極小值,亦即最小值,即,
,則有,則有,
即方程與方程的實(shí)根數(shù)之和為四,
則有,解得,
綜上所述,實(shí)數(shù)的取值范圍是.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),其中.
(1)若對(duì)一切x∈R,≥1恒成立,求a的取值集合;
(2)在函數(shù)的圖像上取定兩點(diǎn),,記直線AB的斜率   為k,問:是否存在x0∈(x1,x2),使成立?若存在,求的取值范圍;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),
(Ⅰ)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(Ⅱ)若在區(qū)間上是減函數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=x2 mlnx
(1)若函數(shù)f(x)在(,+∞)上是遞增的,求實(shí)數(shù)m的取值范圍;
(2)當(dāng)m=2時(shí),求函數(shù)f(x)在[1,e]上的最大值和最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)為正常數(shù).
(Ⅰ)若,且,求函數(shù)的單調(diào)增區(qū)間;
(Ⅱ)若,且對(duì)任意都有,求的的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

曲線在點(diǎn)處的切線方程為_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)曲線在點(diǎn) 處的切線與軸的交點(diǎn)橫坐標(biāo)為,則的值為(   )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

拋物線上點(diǎn)處的切線方程是                   .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù),則 (    )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案