在平面直角坐標(biāo)系中,已知點及直線,曲線是滿足下列兩個條件的動點的軌跡:①其中是到直線的距離;②
(1) 求曲線的方程;
(2) 若存在直線與曲線、橢圓均相切于同一點,求橢圓離心率的取值范圍.
(1) ;(2)
解析試題分析:(1)求出是到直線的距離d和的表達(dá)式,由=2d建立等式,整理得在把代入中求出x的取值范圍即可.
(2)由導(dǎo)數(shù)的幾何意義求出直線m的斜率,求出直線m的參數(shù)方程,然后代入曲線C2方程中,消去y得到關(guān)于x的一元二次方程,由直線與橢圓相切,所以△==0,而又二者聯(lián)立起來解出a2,b2,由a2>b2,求出參數(shù)t的取值范圍,在根據(jù)橢圓離心率e的定義就可求出其范圍.
試題解析:解:(1),
, 2分
由①得:
,
即 4分
將代入②得:,
解得:
所以曲線的方程為: 6分
(2)(解法一)由題意,直線與曲線相切,設(shè)切點為,
則直線的方程為,
即 7分
將代入橢圓 的方程,并整理得:
由題意,直線與橢圓相切于點,則
,
即 9分
又 即 聯(lián)解得: 10分
由及得
故, 12分
得又故
所以橢圓離心率的取值范圍是 14分
(2)(解法二)設(shè)直線與曲線
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線的頂點在坐標(biāo)原點,對稱軸為軸,焦點為,拋物線上一點的橫坐標(biāo)為2,且.
(1)求拋物線的方程;
(2)過點作直線交拋物線于,兩點,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓:經(jīng)過如下五個點中的三個點:,,,,.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)點為橢圓的左頂點,為橢圓上不同于點的兩點,若原點在的外部,且為直角三角形,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓:的離心率為且與雙曲線:有共同焦點.
(1)求橢圓的方程;
(2)在橢圓落在第一象限的圖像上任取一點作的切線,求與坐標(biāo)軸圍成的三角形的面積的最小值;
(3)設(shè)橢圓的左、右頂點分別為,過橢圓上的一點作軸的垂線交軸于點,若點滿足,,連結(jié)交于點,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知兩點,直線AM、BM相交于點M,且這兩條直線的斜率之積為.
(Ⅰ)求點M的軌跡方程;
(Ⅱ)記點M的軌跡為曲線C,曲線C上在第一象限的點P的橫坐標(biāo)為1,直線PE、PF與圓()相切于點E、F,又PE、PF與曲線C的另一交點分別為Q、R.
求△OQR的面積的最大值(其中點O為坐標(biāo)原點).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓,橢圓以的長軸為短軸,且與有相同的離心率.
(1)求橢圓的方程;
(2)設(shè)O為坐標(biāo)原點,點A,B分別在橢圓和上, ,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
給定橢圓,稱圓心在坐標(biāo)原點O,半徑為的圓是橢圓C的“伴隨圓”,已知橢圓C的兩個焦點分別是.
(1)若橢圓C上一動點滿足,求橢圓C及其“伴隨圓”的方程;
(2)在(1)的條件下,過點作直線l與橢圓C只有一個交點,且截橢圓C的“伴隨圓”所得弦長為,求P點的坐標(biāo);
(3)已知,是否存在a,b,使橢圓C的“伴隨圓”上的點到過兩點的直線的最短距離.若存在,求出a,b的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C的左、右焦點分別為,橢圓的離心率為,且橢圓經(jīng)過點.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)線段是橢圓過點的弦,且,求內(nèi)切圓面積最大時實數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知中,點A、B的坐標(biāo)分別為,點C在x軸上方。
(1)若點C坐標(biāo)為,求以A、B為焦點且經(jīng)過點C的橢圓的方程;
(2)過點P(m,0)作傾角為的直線交(1)中曲線于M、N兩點,若點Q(1,0)恰在以線段MN為直徑的圓上,求實數(shù)m的值。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com