在邊長(zhǎng)為a的正三角形的三個(gè)角處各剪去一個(gè)四邊形.這個(gè)四邊形是由兩個(gè)全等的直角三角形組成的,并且這三個(gè)四邊形也全等,如圖①.若用剩下的部分折成一個(gè)無(wú)蓋的正三棱柱形容器,如圖②.則當(dāng)容器的高為多少時(shí),可使這個(gè)容器的容積最大,并求出容積的最大值.

                        圖①                        圖②

當(dāng)容器的高為時(shí),容器的容積最大,其最大容積為


解析:

設(shè)容器的高為x.則容器底面正三角形的邊長(zhǎng)為,

       

                .

    當(dāng)且僅當(dāng) .

故當(dāng)容器的高為時(shí),容器的容積最大,其最大容積為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在邊長(zhǎng)為a的正三角形鐵皮的三個(gè)角切去三個(gè)全等的四邊形,再把它的邊沿虛線(xiàn)折起(如圖),做成一個(gè)無(wú)蓋的正三角形底鐵皮箱,當(dāng)箱底邊長(zhǎng)為多少時(shí),箱子容積最大?最大容積是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

我們知道,在邊長(zhǎng)為a的正三角形內(nèi)任一點(diǎn)到三邊的距離之和為定值
3
a
2
,類(lèi)比上述結(jié)論,在棱長(zhǎng)為a的正四面體內(nèi)任一點(diǎn)到其四個(gè)面的距離之和為定值
6
a
3
6
a
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在邊長(zhǎng)為a的正三角形的三個(gè)角處各剪去一個(gè)四邊形.這個(gè)四邊形是由兩個(gè)全等的直角三角形組成的,并且這三個(gè)四邊形也全等.如:若用剩下的部分折成一個(gè)無(wú)蓋的正三棱柱形容器,如圖(2),則當(dāng)容器的高為多少時(shí),可使這個(gè)容器的容積最大,并求出容積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年江蘇省徐州市高三(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

在邊長(zhǎng)為a的正三角形鐵皮的三個(gè)角切去三個(gè)全等的四邊形,再把它的邊沿虛線(xiàn)折起(如圖),做成一個(gè)無(wú)蓋的正三角形底鐵皮箱,當(dāng)箱底邊長(zhǎng)為多少時(shí),箱子容積最大?最大容積是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013年高考數(shù)學(xué)復(fù)習(xí)卷C(六)(解析版) 題型:解答題

在邊長(zhǎng)為a的正三角形鐵皮的三個(gè)角切去三個(gè)全等的四邊形,再把它的邊沿虛線(xiàn)折起(如圖),做成一個(gè)無(wú)蓋的正三角形底鐵皮箱,當(dāng)箱底邊長(zhǎng)為多少時(shí),箱子容積最大?最大容積是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案