9.若x,y滿足約束條件$\left\{\begin{array}{l}2x-y≥0\\ x+2y-2≥0\\ x-1≤0.\end{array}\right.$則$z=\frac{y}{x}$的最大值為( 。
A.1B.2C.3D.4

分析 首先畫出可行域,利用目標(biāo)函數(shù)的幾何意義求最大值.

解答 解:由約束條件得到可行域如圖:則$z=\frac{y}{x}$的最大值為表示原點(diǎn)與區(qū)域內(nèi)連接的直線的斜率的最大值,所以最大值為2.
故選:B.

點(diǎn)評(píng) 本題考查了簡(jiǎn)單線性規(guī)劃問(wèn)題;求目標(biāo)函數(shù)的最優(yōu)解,利用其幾何意義.體現(xiàn)了數(shù)形結(jié)合的思想.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知數(shù)列{an}中,a1=1,a1+2a2+3a3+…+nan=$\frac{n+1}{2}{a_{n+1}}$(n≥1,n∈Z)
(1)求數(shù)列{an}的通項(xiàng)公式an;
(2)求數(shù)列{n2an}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.下列命題中,所有正確命題的序號(hào)為①②③④
 ①若$\overrightarrow{n_1}、\overrightarrow{n_2}$分別是平面α、β的法向量,則$\overrightarrow{n_1}$∥$\overrightarrow{n_2}$?α∥β
 ②若$\overrightarrow{n_1}、\overrightarrow{n_2}$分別是平面α、β的法向量,則α⊥β?$\overrightarrow{n_1}•\overrightarrow{n_2}=0$
 ③若$\overrightarrow n$是平面α的法向量,$\overrightarrow a$與α共面,則$\overrightarrow n$⊥$\overrightarrow a$.
 ④若兩個(gè)平面的法向量不垂直,則這兩個(gè)平面一定不垂直.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知當(dāng)$x∈[{0,\frac{π}{4}}]$時(shí),函數(shù)$f(x)=2sin(ωx+\frac{π}{6})-1$(ω>0)有且僅有5個(gè)零點(diǎn),則ω的取值范圍是$[16,\frac{56}{3})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知平面向量$\overrightarrow a=({{x_1},{y_1}}),\overrightarrow b=({{x_2},{y_2}})$,若$|{\overrightarrow a}|=3,|{\overrightarrow b}|=4,\overrightarrow a•\overrightarrow b=-12$,則$\frac{{{x_1}+{y_1}}}{{{x_2}+{y_2}}}$=-$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知函數(shù)f(x)=$\sqrt{3}$sin(ωx+φ)(ω>0,-$\frac{π}{2}$≤φ<$\frac{π}{2}$)的圖象關(guān)于直線x=$\frac{π}{3}$對(duì)稱,且圖象上相鄰最高點(diǎn)的距離為π.將函數(shù)y=f(x)的圖象向右平移$\frac{π}{12}$個(gè)單位后,得到y(tǒng)=g(x)的圖象,則g(x)的單調(diào)遞減區(qū)間為.
A.[kπ+$\frac{5π}{12}$,kπ+$\frac{11π}{12}$],k∈ZB.[kπ-$\frac{5π}{12}$,kπ-$\frac{11π}{12}$],k∈Z
C.[kπ-$\frac{5π}{12}$,kπ+$\frac{11π}{12}$],k∈ZD.[kπ+$\frac{5π}{12}$,kπ-$\frac{11π}{12}$],k∈Z

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知O為直角坐標(biāo)系原點(diǎn),P,Q的坐標(biāo)滿足不等式組$\left\{\begin{array}{l}4x+3y-25≤0\\ x-2y+2≤0\\ x-1≥0\end{array}\right.$,則cos∠POQ的最小值為( 。
A.$\frac{{\sqrt{2}}}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$\frac{1}{2}$D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知向量$\overrightarrow a$=(1,-$\sqrt{3}$),$\overrightarrow b$=(sinx,cosx),f(x)=$\overrightarrow a$•$\overrightarrow b$,若f(θ)=0,求$\frac{{2{{cos}^2}\frac{θ}{2}-sinθ-1}}{{\sqrt{2}sin(θ+\frac{π}{4})}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.把語(yǔ)文、數(shù)學(xué)、英語(yǔ)、物理、化學(xué)這五門課程安排在一天的五節(jié)課中,如果數(shù)學(xué)必須比語(yǔ)文先上,則不同的排法有多少種?( 。
A.24B.60C.72D.120

查看答案和解析>>

同步練習(xí)冊(cè)答案